These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 11141058)
1. Thermal unfolding of a llama antibody fragment: a two-state reversible process. Pérez JM; Renisio JG; Prompers JJ; van Platerink CJ; Cambillau C; Darbon H; Frenken LG Biochemistry; 2001 Jan; 40(1):74-83. PubMed ID: 11141058 [TBL] [Abstract][Full Text] [Related]
2. Solution structure of a llama single-domain antibody with hydrophobic residues typical of the VH/VL interface. Vranken W; Tolkatchev D; Xu P; Tanha J; Chen Z; Narang S; Ni F Biochemistry; 2002 Jul; 41(27):8570-9. PubMed ID: 12093273 [TBL] [Abstract][Full Text] [Related]
3. Improving solubility and refolding efficiency of human V(H)s by a novel mutational approach. Tanha J; Nguyen TD; Ng A; Ryan S; Ni F; Mackenzie R Protein Eng Des Sel; 2006 Nov; 19(11):503-9. PubMed ID: 16971398 [TBL] [Abstract][Full Text] [Related]
4. Induced refolding of a temperature denatured llama heavy-chain antibody fragment by its antigen. Dolk E; van Vliet C; Perez JM; Vriend G; Darbon H; Ferrat G; Cambillau C; Frenken LG; Verrips T Proteins; 2005 May; 59(3):555-64. PubMed ID: 15778955 [TBL] [Abstract][Full Text] [Related]
5. Structure of a low-melting-temperature anti-cholera toxin: llama V(H)H domain. Legler PM; Zabetakis D; Anderson GP; Lam A; Hol WG; Goldman ER Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Feb; 69(Pt 2):90-3. PubMed ID: 23385744 [TBL] [Abstract][Full Text] [Related]
6. Camelid heavy-chain variable domains provide efficient combining sites to haptens. Spinelli S; Frenken LG; Hermans P; Verrips T; Brown K; Tegoni M; Cambillau C Biochemistry; 2000 Feb; 39(6):1217-22. PubMed ID: 10684599 [TBL] [Abstract][Full Text] [Related]
7. Domain interactions in antibody Fv and scFv fragments: effects on unfolding kinetics and equilibria. Jäger M; Plückthun A FEBS Lett; 1999 Dec; 462(3):307-12. PubMed ID: 10622716 [TBL] [Abstract][Full Text] [Related]
8. Solution structure and backbone dynamics of an antigen-free heavy chain variable domain (VHH) from Llama. Renisio JG; Pérez J; Czisch M; Guenneugues M; Bornet O; Frenken L; Cambillau C; Darbon H Proteins; 2002 Jun; 47(4):546-55. PubMed ID: 12001233 [TBL] [Abstract][Full Text] [Related]
9. Improved production and function of llama heavy chain antibody fragments by molecular evolution. van der Linden RH; de Geus B; Frenken GJ; Peters H; Verrips CT J Biotechnol; 2000 Jul; 80(3):261-70. PubMed ID: 10949316 [TBL] [Abstract][Full Text] [Related]
10. Thermal denaturation of Escherichia coli thioredoxin studied by hydrogen/deuterium exchange and electrospray ionization mass spectrometry: monitoring a two-state protein unfolding transition. Maier CS; Schimerlik MI; Deinzer ML Biochemistry; 1999 Jan; 38(3):1136-43. PubMed ID: 9894011 [TBL] [Abstract][Full Text] [Related]
11. Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains. Ewert S; Cambillau C; Conrath K; Plückthun A Biochemistry; 2002 Mar; 41(11):3628-36. PubMed ID: 11888279 [TBL] [Abstract][Full Text] [Related]
12. Expression and production of llama variable heavy-chain antibody fragments (V(HH)s) by Aspergillus awamori. Joosten V; Gouka RJ; van den Hondel CA; Verrips CT; Lokman BC Appl Microbiol Biotechnol; 2005 Jan; 66(4):384-92. PubMed ID: 15378291 [TBL] [Abstract][Full Text] [Related]
13. A peptide mimic of an antigenic loop of alpha-human chorionic gonadotropin hormone: solution structure and interaction with a llama V(HH) domain. Ferrat G; Renisio JG; Morelli X; Slootstra J; Meloen R; Cambillau C; Darbon H Biochem J; 2002 Sep; 366(Pt 2):415-22. PubMed ID: 11996668 [TBL] [Abstract][Full Text] [Related]
14. Aggregation-resistant VHs selected by in vitro evolution tend to have disulfide-bonded loops and acidic isoelectric points. Arbabi-Ghahroudi M; To R; Gaudette N; Hirama T; Ding W; MacKenzie R; Tanha J Protein Eng Des Sel; 2009 Feb; 22(2):59-66. PubMed ID: 19033278 [TBL] [Abstract][Full Text] [Related]
15. ¹⁵N, ¹³C and ¹H resonance assignments and secondary structure determination of a variable heavy domain of a heavy chain antibody. Prosser CE; Waters LC; Muskett FW; Veverka V; Addis PW; Griffin LM; Baker TS; Lawson AD; Wernery U; Kinne J; Henry AJ; Taylor RJ; Carr MD Biomol NMR Assign; 2014 Apr; 8(1):113-6. PubMed ID: 23359223 [TBL] [Abstract][Full Text] [Related]
16. The importance of framework residues H6, H7 and H10 in antibody heavy chains: experimental evidence for a new structural subclassification of antibody V(H) domains. Jung S; Spinelli S; Schimmele B; Honegger A; Pugliese L; Cambillau C; Plückthun A J Mol Biol; 2001 Jun; 309(3):701-16. PubMed ID: 11397090 [TBL] [Abstract][Full Text] [Related]
17. Folding dynamics of the src SH3 domain. Grantcharova VP; Baker D Biochemistry; 1997 Dec; 36(50):15685-92. PubMed ID: 9398297 [TBL] [Abstract][Full Text] [Related]
18. Induction of immune responses and molecular cloning of the heavy chain antibody repertoire of Lama glama. van der Linden R; de Geus B; Stok W; Bos W; van Wassenaar D; Verrips T; Frenken L J Immunol Methods; 2000 Jun; 240(1-2):185-95. PubMed ID: 10854612 [TBL] [Abstract][Full Text] [Related]
19. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes. Felitsky DJ; Record MT Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610 [TBL] [Abstract][Full Text] [Related]
20. Single-domain antibody fragments with high conformational stability. Dumoulin M; Conrath K; Van Meirhaeghe A; Meersman F; Heremans K; Frenken LG; Muyldermans S; Wyns L; Matagne A Protein Sci; 2002 Mar; 11(3):500-15. PubMed ID: 11847273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]