These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11141187)

  • 1. Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana.
    Aguadé M
    Mol Biol Evol; 2001 Jan; 18(1):1-9. PubMed ID: 11141187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly structured nucleotide variation within and among Arabidopsis lyrata populations at the FAH1 and DFR gene regions.
    Balañá-Alcaide D; Ramos-Onsins SE; Boone Q; Aguadé M
    Mol Ecol; 2006 Jul; 15(8):2059-68. PubMed ID: 16780424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases.
    Meyer K; Cusumano JC; Somerville C; Chapple CC
    Proc Natl Acad Sci U S A; 1996 Jul; 93(14):6869-74. PubMed ID: 8692910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis.
    Ruegger M; Meyer K; Cusumano JC; Chapple C
    Plant Physiol; 1999 Jan; 119(1):101-10. PubMed ID: 9880351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilocus analysis of variation using a large empirical data set: phenylpropanoid pathway genes in Arabidopsis thaliana.
    Ramos-Onsins SE; Puerma E; Balañá-Alcaide D; Salguero D; Aguadé M
    Mol Ecol; 2008 Mar; 17(5):1211-23. PubMed ID: 18221273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of FERULATE 5-HYDROXYLASE Leads to Mediator-Dependent Inhibition of Soluble Phenylpropanoid Biosynthesis in Arabidopsis.
    Anderson NA; Bonawitz ND; Nyffeler K; Chapple C
    Plant Physiol; 2015 Nov; 169(3):1557-67. PubMed ID: 26048881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical and genetic characterization of Arabidopsis flavanone 3beta-hydroxylase.
    Owens DK; Crosby KC; Runac J; Howard BA; Winkel BS
    Plant Physiol Biochem; 2008 Oct; 46(10):833-43. PubMed ID: 18657430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide variation at the myrosinase-encoding locus, TGG1, and quantitative myrosinase enzyme activity variation in Arabidopsis thaliana.
    Stranger BE; Mitchell-Olds T
    Mol Ecol; 2005 Jan; 14(1):295-309. PubMed ID: 15643972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings. Coordinate regulation with chalcone synthase and chalcone isomerase.
    Pelletier MK; Shirley BW
    Plant Physiol; 1996 May; 111(1):339-45. PubMed ID: 8685272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population genetics of tandem trypsin inhibitor genes in Arabidopsis species with contrasting ecology and life history.
    Clauss MJ; Mitchell-Olds T
    Mol Ecol; 2003 May; 12(5):1287-99. PubMed ID: 12694291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system.
    Buckley J; Kilbride E; Cevik V; Vicente JG; Holub EB; Mable BK
    BMC Evol Biol; 2016 May; 16():93. PubMed ID: 27150007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide variation at the CHALCONE ISOMERASE locus in Arabidopsis thaliana.
    Kuittinen H; Aguadé M
    Genetics; 2000 Jun; 155(2):863-72. PubMed ID: 10835405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrasting patterns of nucleotide polymorphism at the alcohol dehydrogenase locus in the outcrossing Arabidopsis lyrata and the selfing Arabidopsis thaliana.
    Savolainen O; Langley CH; Lazzaro BP; Fr H
    Mol Biol Evol; 2000 Apr; 17(4):645-55. PubMed ID: 10742055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage.
    Landry LG; Chapple CC; Last RL
    Plant Physiol; 1995 Dec; 109(4):1159-66. PubMed ID: 8539286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balancing selection and low recombination affect diversity near the self-incompatibility loci of the plant Arabidopsis lyrata.
    Kamau E; Charlesworth D
    Curr Biol; 2005 Oct; 15(19):1773-8. PubMed ID: 16213826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Nucleotide polymorphism in the drought induced transcription factor CBF4 region of Arabidopsis thaliana and its molecular evolution analyses].
    Hao GP; Wu ZY; Cao MQ; Pelletier G; Brunel D; Huang CL; Yang Q
    Yi Chuan Xue Bao; 2004 Dec; 31(12):1415-25. PubMed ID: 15633649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subdivision and haplotype structure in natural populations of Arabidopsis lyrata.
    Wright SI; Lauga B; Charlesworth D
    Mol Ecol; 2003 May; 12(5):1247-63. PubMed ID: 12694288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilocus analysis of variation and speciation in the closely related species Arabidopsis halleri and A. lyrata.
    Ramos-Onsins SE; Stranger BE; Mitchell-Olds T; Aguadé M
    Genetics; 2004 Jan; 166(1):373-88. PubMed ID: 15020431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes.
    Clauss MJ; Mitchell-Olds T
    Genetics; 2004 Mar; 166(3):1419-36. PubMed ID: 15082560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversification of the duplicated F3h genes in Triticeae.
    Khlestkina EK; Dobrovolskaya OB; Leonova IN; Salina EA
    J Mol Evol; 2013 Apr; 76(4):261-6. PubMed ID: 23503816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.