BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 11141307)

  • 21. Lifetime heterogeneity of DNA-bound dppz complexes originates from distinct intercalation geometries determined by complex-complex interactions.
    Andersson J; Fornander LH; Abrahamsson M; Tuite E; Nordell P; Lincoln P
    Inorg Chem; 2013 Jan; 52(2):1151-9. PubMed ID: 23268648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis, characterization and the effect of ligand planarity of [Ru(bpy)2L]2+ on DNA binding affinity.
    Zhen QX; Ye BH; Zhang QL; Liu JG; Li H; Ji LN; Wang L
    J Inorg Biochem; 1999 Jul; 76(1):47-53. PubMed ID: 10530006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A beta-D-allopyranoside-grafted Ru(II) complex: synthesis and acid-base and DNA-binding properties.
    Ma YZ; Yin HJ; Wang KZ
    J Phys Chem B; 2009 Aug; 113(31):11039-47. PubMed ID: 19719276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new heteroleptic ruthenium(II) polypyridyl complex with long-wavelength absorption and high singlet-oxygen quantum yield.
    Zhou QX; Lei WH; Chen JR; Li C; Hou YJ; Wang XS; Zhang BW
    Chemistry; 2010 Mar; 16(10):3157-65. PubMed ID: 20108277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors.
    Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved luminescence energy transfer immunobinding study using a ruthenium-ligand complex as a donor label.
    Augustin CM; Oswald B; Wolfbeis OS
    Anal Biochem; 2002 Jun; 305(2):166-72. PubMed ID: 12054445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TOTO binding affinity analysis using single-molecule fluorescence spectroscopy.
    Bowen BP; Woodbury NW
    Photochem Photobiol; 2003 Dec; 78(6):582-6. PubMed ID: 14743866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes.
    Maliwal BP; Kuśba J; Lakowicz JR
    Biopolymers; 1995 Feb; 35(2):245-55. PubMed ID: 7696569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous binding of minor groove binder and intercalator to dodecamer DNA: importance of relative orientation of donor and acceptor in FRET.
    Banerjee D; Pal SK
    J Phys Chem B; 2007 May; 111(19):5047-52. PubMed ID: 17455977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies.
    Soler M; McCusker JK
    J Am Chem Soc; 2008 Apr; 130(14):4708-24. PubMed ID: 18341336
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA dynamics: a fluorescence resonance energy transfer study using a long-lifetime metal-ligand complex.
    Kang JS; Lakowicz JR; Piszczek G
    Arch Pharm Res; 2002 Apr; 25(2):143-50. PubMed ID: 12009026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Radiative decay engineering. 2. Effects of Silver Island films on fluorescence intensity, lifetimes, and resonance energy transfer.
    Lakowicz JR; Shen Y; D'Auria S; Malicka J; Fang J; Gryczynski Z; Gryczynski I
    Anal Biochem; 2002 Feb; 301(2):261-77. PubMed ID: 11814297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absence of quenching by [Fe(CN)6]4- is not proof of DNA intercalation.
    Burya SJ; Lutterman DA; Turro C
    Chem Commun (Camb); 2011 Feb; 47(6):1848-50. PubMed ID: 21206938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cyanine dyes with high absorption cross section as donor chromophores in energy transfer primers.
    Hung SC; Ju J; Mathies RA; Glazer AN
    Anal Biochem; 1996 Dec; 243(1):15-27. PubMed ID: 8954521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new type of phosphorescent nanospheres for use in advanced time-resolved multiplexed bioassays.
    Kürner JM; Klimant I; Krause C; Pringsheim E; Wolfbeis OS
    Anal Biochem; 2001 Oct; 297(1):32-41. PubMed ID: 11567525
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of the substitution positions of Br group in intercalative ligand on the DNA-binding behaviors of Ru(II) polypyridyl complexes.
    Xu H; Zheng KC; Lin LJ; Li H; Gao Y; Ji LN
    J Inorg Biochem; 2004 Jan; 98(1):87-97. PubMed ID: 14659637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing DNA selectivity of ruthenium metallointercalators using ESI mass spectrometry.
    Beck JL; Gupta R; Urathamakul T; Williamson NL; Sheil MM; Aldrich-Wright JR; Ralph SF
    Chem Commun (Camb); 2003 Mar; (5):626-7. PubMed ID: 12669857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications.
    Rye HS; Yue S; Wemmer DE; Quesada MA; Haugland RP; Mathies RA; Glazer AN
    Nucleic Acids Res; 1992 Jun; 20(11):2803-12. PubMed ID: 1614866
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fluorescence energy-transfer cyanine heterodimers with high affinity for double-stranded DNA. I. Synthesis and spectroscopic properties.
    Benson SC; Zeng Z; Glazer AN
    Anal Biochem; 1995 Oct; 231(1):247-55. PubMed ID: 8678308
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Near-IR emissive chlorin-bacteriochlorin energy-transfer dyads with a common donor and acceptors with tunable emission wavelength.
    Yu Z; Ptaszek M
    J Org Chem; 2013 Nov; 78(21):10678-91. PubMed ID: 24079536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.