These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 11142508)

  • 21. Projection angle restraints for studying structure and dynamics of biomolecules.
    Griesinger C; Peti W; Meiler J; Brüschweiler R
    Methods Mol Biol; 2004; 278():107-21. PubMed ID: 15317994
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation?
    Clore GM; Schwieters CD
    J Am Chem Soc; 2004 Mar; 126(9):2923-38. PubMed ID: 14995210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy.
    Evenäs J; Tugarinov V; Skrynnikov NR; Goto NK; Muhandiram R; Kay LE
    J Mol Biol; 2001 Jun; 309(4):961-74. PubMed ID: 11399072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De novo determination of protein structure by NMR using orientational and long-range order restraints.
    Hus JC; Marion D; Blackledge M
    J Mol Biol; 2000 May; 298(5):927-36. PubMed ID: 10801359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy.
    Ulmer TS; Ramirez BE; Delaglio F; Bax A
    J Am Chem Soc; 2003 Jul; 125(30):9179-91. PubMed ID: 15369375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequential assignments of the isolated N-terminal domain of 5-enolpyruvylshikimate-3-phosphate synthase.
    Stauffer ME; Young JK; Helms GL; Evans JN
    J Biomol NMR; 2001 Aug; 20(4):387-8. PubMed ID: 11563562
    [No Abstract]   [Full Text] [Related]  

  • 27. Chemical shift mapping of shikimate-3-phosphate binding to the isolated N-terminal domain of 5-enolpyruvylshikimate-3-phosphate synthase.
    Stauffer ME; Young JK; Helms GL; Evans JN
    FEBS Lett; 2001 Jun; 499(1-2):182-6. PubMed ID: 11418136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution structure and backbone dynamics of the TGFbeta type II receptor extracellular domain.
    Deep S; Walker KP; Shu Z; Hinck AP
    Biochemistry; 2003 Sep; 42(34):10126-39. PubMed ID: 12939140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude.
    Clore GM; Gronenborn AM; Tjandra N
    J Magn Reson; 1998 Mar; 131(1):159-62. PubMed ID: 9533920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes.
    Hajduk PJ; Mack JC; Olejniczak ET; Park C; Dandliker PJ; Beutel BA
    J Am Chem Soc; 2004 Mar; 126(8):2390-8. PubMed ID: 14982445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model-free analysis of protein backbone motion from residual dipolar couplings.
    Peti W; Meiler J; Brüschweiler R; Griesinger C
    J Am Chem Soc; 2002 May; 124(20):5822-33. PubMed ID: 12010057
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings.
    Chou JJ; Li S; Bax A
    J Biomol NMR; 2000 Nov; 18(3):217-27. PubMed ID: 11142512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Force field dependence of NMR-Based, restrained molecular dynamics DNA structure calculations including an analysis of the influence of residual dipolar coupling restraints.
    McAteer K; Kennedy MA
    J Biomol Struct Dyn; 2003 Feb; 20(4):487-506. PubMed ID: 12529149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement and application of 1H-19F dipolar couplings in the structure determination of 2'-fluorolabeled RNA.
    Luy B; Marino JP
    J Biomol NMR; 2001 May; 20(1):39-47. PubMed ID: 11430754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
    Cornilescu G; Bahrami A; Tonelli M; Markley JL; Eghbalnia HR
    J Biomol NMR; 2007 Aug; 38(4):341-51. PubMed ID: 17610130
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dipolar couplings as a probe of molecular dynamics and structure in solution.
    Tolman JR
    Curr Opin Struct Biol; 2001 Oct; 11(5):532-9. PubMed ID: 11785752
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An easy way to include weak alignment constraints into NMR structure calculations.
    Sass HJ; Musco G; Stahl SJ; Wingfield PT; Grzesiek S
    J Biomol NMR; 2001 Nov; 21(3):275-80. PubMed ID: 11775744
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Domain orientation and dynamics in multidomain proteins from residual dipolar couplings.
    Fischer MW; Losonczi JA; Weaver JL; Prestegard JH
    Biochemistry; 1999 Jul; 38(28):9013-22. PubMed ID: 10413474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40.
    Wiesner S; Stier G; Sattler M; Macias MJ
    J Mol Biol; 2002 Dec; 324(4):807-22. PubMed ID: 12460579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR structure of the DNA-binding domain of the cell cycle protein Mbp1 from Saccharomyces cerevisiae.
    Nair M; McIntosh PB; Frenkiel TA; Kelly G; Taylor IA; Smerdon SJ; Lane AN
    Biochemistry; 2003 Feb; 42(5):1266-73. PubMed ID: 12564929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.