BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 11143337)

  • 1. The use of self organizing maps to evaluate myoelectric signals.
    Patterson PE; Anderson M
    Biomed Sci Instrum; 1999; 35():147-52. PubMed ID: 11143337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis.
    Karlik B; Tokhi MO; Alci M
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on the surface EMG pattern classification with BP neural networks].
    Wang R; Huang C; Li B; Jin D; Zhang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 1998 Mar; 22(2):63-6. PubMed ID: 12016830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface myoelectric signal analysis: dynamic approaches for change detection and classification.
    Al-Assaf Y
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2248-56. PubMed ID: 17073330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface myoelectric signal classification for prostheses control.
    Al-Assaf Y; Al-Nashash H
    J Med Eng Technol; 2005; 29(5):203-7. PubMed ID: 16126579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of the physiological actions of the triphasic EMG pattern by a dynamic recurrent neural network.
    Cheron G; Cebolla AM; Bengoetxea A; Leurs F; Dan B
    Neurosci Lett; 2007 Mar; 414(2):192-6. PubMed ID: 17224236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-contraction of the pronator teres and extensor carpi radialis during wrist extension movements in humans.
    Fujii H; Kobayashi S; Sato T; Shinozaki K; Naito A
    J Electromyogr Kinesiol; 2007 Feb; 17(1):80-9. PubMed ID: 16516494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Support vector machine-based classification scheme for myoelectric control applied to upper limb.
    Oskoei MA; Hu H
    IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic determination of synergies by radial basis function artificial neural networks for the control of a neural prosthesis.
    Iftime SD; Egsgaard LL; Popović MB
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):482-9. PubMed ID: 16425830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Counteractive relationship between the interaction torque and muscle torque at the wrist is predestined in ball-throwing.
    Hirashima M; Ohgane K; Kudo K; Hase K; Ohtsuki T
    J Neurophysiol; 2003 Sep; 90(3):1449-63. PubMed ID: 12966174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Multiple Finger Motions During Dynamic Upper Limb Movements.
    Yang D; Yang W; Huang Q; Liu H
    IEEE J Biomed Health Inform; 2017 Jan; 21(1):134-141. PubMed ID: 26469791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow.
    Koo TK; Mak AF
    J Electromyogr Kinesiol; 2005 Feb; 15(1):12-26. PubMed ID: 15642650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The function of brachioradialis.
    Boland MR; Spigelman T; Uhl TL
    J Hand Surg Am; 2008 Dec; 33(10):1853-9. PubMed ID: 19084189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding of individuated finger movements using surface electromyography.
    Tenore FV; Ramos A; Fahmy A; Acharya S; Etienne-Cummings R; Thakor NV
    IEEE Trans Biomed Eng; 2009 May; 56(5):1427-34. PubMed ID: 19473933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electromyographyc evaluation of movements of lower limb in double pulley system equipment: comparison between gastrocnemius (caput laterale) and gluteus maximus.
    Tassi N; Engrácia Valenti V
    Electromyogr Clin Neurophysiol; 2007 Sep; 47(6):293-9. PubMed ID: 17918505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pilot study of myoelectrically controlled FES of upper extremity.
    Thorsen R; Spadone R; Ferrarin M
    IEEE Trans Neural Syst Rehabil Eng; 2001 Jun; 9(2):161-8. PubMed ID: 11474969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions.
    Fang Y; Siemionow V; Sahgal V; Xiong F; Yue GH
    Brain Res; 2004 Oct; 1023(2):200-12. PubMed ID: 15374746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.