These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11143353)

  • 1. Error analysis of a direct current electromagnetic tracking system in digitizing 3-dimensional surface geometries.
    Milne AD; Lee JM
    Biomed Sci Instrum; 1999; 35():23-8. PubMed ID: 11143353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of an electromagnetic position tracking device for measuring in vivo, dynamic joint kinematics.
    Schuler NB; Bey MJ; Shearn JT; Butler DL
    J Biomech; 2005 Oct; 38(10):2113-7. PubMed ID: 16084212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of surface area digitizations on the prediction of spherical anatomical geometries for computer-assisted applications.
    Whitney KD; Ferreira LM; King GJ; Johnson JA
    J Biomech; 2009 May; 42(8):1158-61. PubMed ID: 19376520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of calibration methods for spatial tracking of a 3-D ultrasound probe.
    Poon TC; Rohling RN
    Ultrasound Med Biol; 2005 Aug; 31(8):1095-108. PubMed ID: 16085100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of the "Flock of Birds" electromagnetic tracking device and its application in shoulder motion studies.
    Meskers CG; Fraterman H; van der Helm FC; Vermeulen HM; Rozing PM
    J Biomech; 1999 Jun; 32(6):629-33. PubMed ID: 10332628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a new electromagnetic tracking system using a standardized assessment protocol.
    Hummel J; Figl M; Birkfellner W; Bax MR; Shahidi R; Maurer CR; Bergmann H
    Phys Med Biol; 2006 May; 51(10):N205-10. PubMed ID: 16675856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 3D ultrasound probes on the accuracy of electromagnetic tracking systems.
    Hastenteufel M; Vetter M; Meinzer HP; Wolf I
    Ultrasound Med Biol; 2006 Sep; 32(9):1359-68. PubMed ID: 16965976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.
    Donati M; Camomilla V; Vannozzi G; Cappozzo A
    J Biomech; 2008 Jul; 41(10):2219-26. PubMed ID: 18550066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of a direct current electromagnetic tracking device in a metallic environment.
    Stone JJ; Currier BL; Niebur GL; An KN
    Biomed Sci Instrum; 1996; 32():305-11. PubMed ID: 8672684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cutaneous and transosseous electromagnetic position sensors in the assessment of tibial rotation in a cadaveric model.
    Magit DP; McGarry M; Tibone JE; Lee TQ
    Am J Sports Med; 2008 May; 36(5):971-7. PubMed ID: 18272792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and application of an assessment protocol for electromagnetic tracking systems.
    Hummel JB; Bax MR; Figl ML; Kang Y; Maurer C; Birkfellner WW; Bergmann H; Shahidi R
    Med Phys; 2005 Jul; 32(7):2371-9. PubMed ID: 16121595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Six sigma analysis of computer-assisted surgery tracking protocols in TKA.
    Stiehl JB; Heck DA
    Clin Orthop Relat Res; 2007 Nov; 464():105-10. PubMed ID: 17632418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Propagation of anatomical landmark misplacement to knee kinematics: performance of single and double calibration.
    Stagni R; Fantozzi S; Cappello A
    Gait Posture; 2006 Oct; 24(2):137-41. PubMed ID: 16934471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the cervical range of motion over time, differences between results of the Flock of Birds and the EDI-320: a comparison between an electromagnetic tracking system and an electronic inclinometer.
    Assink N; Bergman GJ; Knoester B; Winters JC; Dijkstra PU
    Man Ther; 2008 Oct; 13(5):450-5. PubMed ID: 17681865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration and validation of 6 DOFs instrumented spatial linkage for biomechanical applications. A practical approach.
    Sholukha V; Salvia P; Hilal I; Feipel V; Rooze M; Jan SV
    Med Eng Phys; 2004 Apr; 26(3):251-60. PubMed ID: 14984847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhanced protocol to reduce error in electromagnetic tracking of first metatarsophalangeal joint motions.
    Longworth R; Chockalingam N; Redmond AC
    Gait Posture; 2006 Apr; 23(3):391-4. PubMed ID: 15963725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: performance of a novel method during selected motor tasks.
    Cappello A; Stagni R; Fantozzi S; Leardini A
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):992-8. PubMed ID: 15977729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct comparison of kinematic data collected using an electromagnetic tracking system versus a digital optical system.
    Hassan EA; Jenkyn TR; Dunning CE
    J Biomech; 2007; 40(4):930-5. PubMed ID: 16730353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of freehand 3-D ultrasound calibration techniques using a stylus.
    Hsu PW; Treece GM; Prager RW; Houghton NE; Gee AH
    Ultrasound Med Biol; 2008 Oct; 34(10):1610-21. PubMed ID: 18420335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guide wire reconstruction and visualization in 3DRA using monoplane fluoroscopic imaging.
    van Walsum T; Baert SA; Niessen WJ
    IEEE Trans Med Imaging; 2005 May; 24(5):612-23. PubMed ID: 15889549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.