BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11143369)

  • 1. The effects of crosslinking density on cartilage formation in photocrosslinkable hydrogels.
    Bryant SJ; Nuttelman CR; Anseth KS
    Biomed Sci Instrum; 1999; 35():309-14. PubMed ID: 11143369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering.
    Dadsetan M; Szatkowski JP; Yaszemski MJ; Lu L
    Biomacromolecules; 2007 May; 8(5):1702-9. PubMed ID: 17419584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ; Bryant SJ; Anseth KS
    Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production.
    Bryant SJ; Bender RJ; Durand KL; Anseth KS
    Biotechnol Bioeng; 2004 Jun; 86(7):747-55. PubMed ID: 15162450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage.
    Bryant SJ; Anseth KS
    J Biomed Mater Res A; 2003 Jan; 64(1):70-9. PubMed ID: 12483698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel.
    Villanueva I; Klement BJ; von Deutsch D; Bryant SJ
    Biotechnol Bioeng; 2009 Mar; 102(4):1242-50. PubMed ID: 18949761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane). III. In vivo biocompatibility and biostability.
    Hyung Park J; Bae YH
    J Biomed Mater Res A; 2003 Feb; 64(2):309-19. PubMed ID: 12522818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoreversible hydrogel scaffolds for articular cartilage engineering.
    Fisher JP; Jo S; Mikos AG; Reddi AH
    J Biomed Mater Res A; 2004 Nov; 71(2):268-74. PubMed ID: 15368220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel poly(ethylene glycol) scaffolds crosslinked by hydrolyzable polyrotaxane for cartilage tissue engineering.
    Lee WK; Ichi T; Ooya T; Yamamoto T; Katoh M; Yui N
    J Biomed Mater Res A; 2003 Dec; 67(4):1087-92. PubMed ID: 14624493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels.
    Nicodemus GD; Villanueva I; Bryant SJ
    J Biomed Mater Res A; 2007 Nov; 83(2):323-31. PubMed ID: 17437304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain.
    Bryant SJ; Anseth KS; Lee DA; Bader DL
    J Orthop Res; 2004 Sep; 22(5):1143-9. PubMed ID: 15304291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel.
    Vinatier C; Magne D; Moreau A; Gauthier O; Malard O; Vignes-Colombeix C; Daculsi G; Weiss P; Guicheux J
    J Biomed Mater Res A; 2007 Jan; 80(1):66-74. PubMed ID: 16958048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
    Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A
    Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of redox polymerisation on degradation and cell responses to poly (vinyl alcohol) hydrogels.
    Mawad D; Martens PJ; Odell RA; Poole-Warren LA
    Biomaterials; 2007 Feb; 28(6):947-55. PubMed ID: 17084445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.
    Yang Q; Peng J; Guo Q; Huang J; Zhang L; Yao J; Yang F; Wang S; Xu W; Wang A; Lu S
    Biomaterials; 2008 May; 29(15):2378-87. PubMed ID: 18313139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application.
    Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH
    J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time monitoring of force response measured in mechanically stimulated tissue-engineered cartilage.
    Preiss-Bloom O; Mizrahi J; Elisseeff J; Seliktar D
    Artif Organs; 2009 Apr; 33(4):318-27. PubMed ID: 19335408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.