These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 11143379)

  • 1. Verification of the finite element method to model subthreshold electrical current density in saline.
    Waugaman WA
    Biomed Sci Instrum; 1999; 35():367-72. PubMed ID: 11143379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of internal electric current distribution from surface application in atrophied muscle tissue.
    Waugaman WA
    Biomed Sci Instrum; 2001; 37():361-6. PubMed ID: 11347417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical current density model from surface electrodes.
    Waugaman WA
    Biomed Sci Instrum; 1997; 34():131-6. PubMed ID: 9603026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient finite element modeling of functional electrical stimulation.
    Filipovic ND; Peulic AS; Zdravkovic ND; Grbovic-Markovic VM; Jurisic-Skevin AJ
    Gen Physiol Biophys; 2011 Mar; 30(1):59-65. PubMed ID: 21460413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Array electrode design for transcutaneous electrical stimulation: a simulation study.
    Kuhn A; Keller T; Micera S; Morari M
    Med Eng Phys; 2009 Oct; 31(8):945-51. PubMed ID: 19540788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating neuromuscular stimulation within the human torso with Taser stimulus.
    Sun H; Webster JG
    Phys Med Biol; 2007 Nov; 52(21):6401-11. PubMed ID: 17951851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm.
    Kuhn A; Keller T; Lawrence M; Morari M
    IEEE Trans Neural Syst Rehabil Eng; 2010 Jun; 18(3):255-62. PubMed ID: 20071267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of electrical stimulation current in a planar multilayer anisotropic tissue.
    Mesin L; Merletti R
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):660-70. PubMed ID: 18270002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.
    Miranda PC; Hallett M; Basser PJ
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1074-85. PubMed ID: 12943275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A study on distribution modeling of the electrical stimulation under surface nerve stimulation electrodes for somatosensory evoked potential].
    Hu Y; Yu J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1999 Dec; 16(4):462-6. PubMed ID: 12552724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element model to identify electrode influence on current distribution in the skin.
    Sha N; Kenney LP; Heller BW; Barker AT; Howard D; Moatamedi M
    Artif Organs; 2008 Aug; 32(8):639-43. PubMed ID: 18782136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modeling.
    Wolters CH; Anwander A; Tricoche X; Weinstein D; Koch MA; MacLeod RS
    Neuroimage; 2006 Apr; 30(3):813-26. PubMed ID: 16364662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation of corticospinal activity during Transcranial Electrical Stimulation in neurosurgery.
    Li DL; Journee HL; van Hulzen A; Rath WT; Sclabassi RJ; Sun M
    Stud Health Technol Inform; 2007; 125():292-7. PubMed ID: 17377288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field distributions in the rat tibia with and without a porous implant during electrical stimulation: a parametric modeling.
    Ducheyne P; Ellis LY; Pollack SR; Pienkowski D; Cuckler JM
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1168-78. PubMed ID: 1487280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometry-based finite-element modeling of the electrical contact between a cultured neuron and a microelectrode.
    Buitenweg JR; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2003 Apr; 50(4):501-9. PubMed ID: 12723062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis.
    Datta A; Elwassif M; Battaglia F; Bikson M
    J Neural Eng; 2008 Jun; 5(2):163-74. PubMed ID: 18441418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential finite element model of tissue electropermeabilization.
    Sel D; Cukjati D; Batiuskaite D; Slivnik T; Mir LM; Miklavcic D
    IEEE Trans Biomed Eng; 2005 May; 52(5):816-27. PubMed ID: 15887531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of optimal electrode positions for transcranial direct current stimulation (tDCS).
    Im CH; Jung HH; Choi JD; Lee SY; Jung KY
    Phys Med Biol; 2008 Jun; 53(11):N219-25. PubMed ID: 18490807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.