These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 11143562)

  • 1. Use of Markush structure analysis techniques for descriptor generation and clustering of large combinatorial libraries.
    Barnard JM; Downs GM; von Scholley-Pfab A; Brown RD
    J Mol Graph Model; 2000; 18(4-5):452-63. PubMed ID: 11143562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimization and structure-based diversity.
    Mason JS; Beno BR
    J Mol Graph Model; 2000; 18(4-5):438-51, 538. PubMed ID: 11143561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oriented substituent pharmacophore PRopErtY space (OSPPREYS): a substituent-based calculation that describes combinatorial library products better than the corresponding product-based calculation.
    Martin EJ; Hoeffel TJ
    J Mol Graph Model; 2000; 18(4-5):383-403. PubMed ID: 11143557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a virtual combinatorial library using SMILES strings to discover potential structure-diverse PPAR modulators.
    Liao C; Liu B; Shi L; Zhou J; Lu XP
    Eur J Med Chem; 2005 Jul; 40(7):632-40. PubMed ID: 15935898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial library design from reagent pharmacophore fingerprints.
    Chen H; Engkvist O; Blomberg N
    Methods Mol Biol; 2011; 685():135-52. PubMed ID: 20981522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization.
    Podlewska S; Czarnecki WM; Kafel R; Bojarski AJ
    J Chem Inf Model; 2017 Feb; 57(2):133-147. PubMed ID: 28158942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniqueness: skews bit occurrence frequencies in randomly generated fingerprint libraries.
    Chen NG
    Mol Divers; 2016 Aug; 20(3):741-5. PubMed ID: 27230477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging chemical and biological approaches for the preparation of discovery libraries.
    Boldt GE; Dickerson TJ; Janda KD
    Drug Discov Today; 2006 Feb; 11(3-4):143-8. PubMed ID: 16533712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of mathematical structural invariants in analyzing combinatorial libraries: a case study with psoralen derivatives.
    Basak SC; Mills D; Gute BD; Balaban AT; Basak K; Grunwald GD
    Curr Comput Aided Drug Des; 2010 Dec; 6(4):240-51. PubMed ID: 20883202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drug discovery by dynamic combinatorial libraries.
    Ramström O; Lehn JM
    Nat Rev Drug Discov; 2002 Jan; 1(1):26-36. PubMed ID: 12119606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intuitive patent Markush structure visualization tool for medicinal chemists.
    Deng W; Berthel SJ; So WV
    J Chem Inf Model; 2011 Mar; 51(3):511-20. PubMed ID: 21381694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of a sparse matrix design strategy to the synthesis of dos libraries.
    Akella LB; Marcaurelle LA
    ACS Comb Sci; 2011 Jul; 13(4):357-64. PubMed ID: 21526822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. A cheminformatics "proof-of-concept" study.
    Moshawih S; Hadikhani P; Fatima A; Goh HP; Kifli N; Kotra V; Goh KW; Ming LC
    J Mol Graph Model; 2022 Dec; 117():108307. PubMed ID: 36096064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel algorithms for the optimization of molecular diversity of combinatorial libraries.
    Waldman M; Li H; Hassan M
    J Mol Graph Model; 2000; 18(4-5):412-26, 533-6. PubMed ID: 11143559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular fingerprinting on the SIMD parallel processor Kestrel.
    Rice E; Hughey R
    Pac Symp Biocomput; 2001; ():323-34. PubMed ID: 11262952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based generation of viable leads from small combinatorial libraries.
    Laird ER; Blake JF
    Curr Opin Drug Discov Devel; 2004 May; 7(3):354-9. PubMed ID: 15216940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction and recombination of fingerprints of different design increase compound recall and the structural diversity of hits.
    Nisius B; Bajorath J
    Chem Biol Drug Des; 2010 Feb; 75(2):152-60. PubMed ID: 20028390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Library design practices for success in lead generation with small molecule libraries.
    Goodnow RA; Guba W; Haap W
    Comb Chem High Throughput Screen; 2003 Nov; 6(7):649-60. PubMed ID: 14683492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. JEDA: Joint entropy diversity analysis. An information-theoretic method for choosing diverse and representative subsets from combinatorial libraries.
    Landon MR; Schaus SE
    Mol Divers; 2006 Aug; 10(3):333-9. PubMed ID: 17031536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.