These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11143564)

  • 1. Efficient combinatorial filtering for desired molecular properties of reaction products.
    Shi S; Peng Z; Kostrowicki J; Paderes G; Kuki A
    J Mol Graph Model; 2000; 18(4-5):478-96. PubMed ID: 11143564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic hierarchical mixing for the production of combinatorial libraries of proteins and small molecules.
    Avramova LV; Desai J; Weaver S; Friedman AM; Bailey-Kellogg C
    J Comb Chem; 2008; 10(1):63-8. PubMed ID: 18072752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GLARE: A tool for product-oriented design of combinatorial libraries.
    Truchon JF
    Methods Mol Biol; 2011; 685():337-46. PubMed ID: 20981532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LoFT: similarity-driven multiobjective focused library design.
    Fischer JR; Lessel U; Rarey M
    J Chem Inf Model; 2010 Jan; 50(1):1-21. PubMed ID: 20020715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of random sampling to virtual screening of combinatorial libraries.
    Beroza P; Bradley EK; Eksterowicz JE; Feinstein R; Greene J; Grootenhuis PD; Henne RM; Mount J; Shirley WA; Smellie A; Stanton RV; Spellmeyer DC
    J Mol Graph Model; 2000; 18(4-5):335-42. PubMed ID: 11143553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel algorithms for the optimization of molecular diversity of combinatorial libraries.
    Waldman M; Li H; Hassan M
    J Mol Graph Model; 2000; 18(4-5):412-26, 533-6. PubMed ID: 11143559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GLARE: a new approach for filtering large reagent lists in combinatorial library design using product properties.
    Truchon JF; Bayly CI
    J Chem Inf Model; 2006; 46(4):1536-48. PubMed ID: 16859286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening.
    Xue L; Bajorath J
    Comb Chem High Throughput Screen; 2000 Oct; 3(5):363-72. PubMed ID: 11032954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LEAP into the Pfizer Global Virtual Library (PGVL) space: creation of readily synthesizable design ideas automatically.
    Hu Q; Peng Z; Kostrowicki J; Kuki A
    Methods Mol Biol; 2011; 685():253-76. PubMed ID: 20981528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
    O'Reilly RK; Turberfield AJ; Wilks TR
    Acc Chem Res; 2017 Oct; 50(10):2496-2509. PubMed ID: 28915003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The growing impact of click chemistry on drug discovery.
    Kolb HC; Sharpless KB
    Drug Discov Today; 2003 Dec; 8(24):1128-37. PubMed ID: 14678739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold architecture and pharmacophoric properties of natural products and trade drugs: application in the design of natural product-based combinatorial libraries.
    Lee ML; Schneider G
    J Comb Chem; 2001; 3(3):284-9. PubMed ID: 11350252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemoinformatics - similarity and diversity in chemical libraries.
    Willett P
    Curr Opin Biotechnol; 2000 Feb; 11(1):85-8. PubMed ID: 10679335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oriented substituent pharmacophore PRopErtY space (OSPPREYS): a substituent-based calculation that describes combinatorial library products better than the corresponding product-based calculation.
    Martin EJ; Hoeffel TJ
    J Mol Graph Model; 2000; 18(4-5):383-403. PubMed ID: 11143557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scalable approach to combinatorial library design for drug discovery.
    Sharma P; Salapaka S; Beck C
    J Chem Inf Model; 2008 Jan; 48(1):27-41. PubMed ID: 18052333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concepts and applications of "natural computing" techniques in de novo drug and peptide design.
    Hiss JA; Hartenfeller M; Schneider G
    Curr Pharm Des; 2010 May; 16(15):1656-65. PubMed ID: 20222857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial library design for diversity, cost efficiency, and drug-like character.
    Brown RD; Hassan M; Waldman M
    J Mol Graph Model; 2000; 18(4-5):427-37, 537. PubMed ID: 11143560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial chemistry by ant colony optimization.
    Hiss JA; Reutlinger M; Koch CP; Perna AM; Schneider P; Rodrigues T; Haller S; Folkers G; Weber L; Baleeiro RB; Walden P; Wrede P; Schneider G
    Future Med Chem; 2014 Mar; 6(3):267-80. PubMed ID: 24575965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Making "real" molecules in virtual space.
    Pirok G; Maté N; Varga J; Szegezdi J; Vargyas M; Dórant S; Csizmadia F
    J Chem Inf Model; 2006; 46(2):563-8. PubMed ID: 16562984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural products and combinatorial chemistry: back to the future.
    Ortholand JY; Ganesan A
    Curr Opin Chem Biol; 2004 Jun; 8(3):271-80. PubMed ID: 15183325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.