BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 11144265)

  • 1. Light quantity controls leaf-cell and chloroplast development in Arabidopsis thaliana wild type and blue-light-perception mutants.
    Weston E; Thorogood K; Vinti G; López-Juez E
    Planta; 2000 Nov; 211(6):807-15. PubMed ID: 11144265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct leaf developmental and gene expression responses to light quantity depend on blue-photoreceptor or plastid-derived signals, and can occur in the absence of phototropins.
    López-Juez E; Bowyer JR; Sakai T
    Planta; 2007 Dec; 227(1):113-23. PubMed ID: 17701203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acclimation of Arabidopsis thaliana to the light environment: the role of photoreceptors.
    Walters RG; Rogers JJ; Shephard F; Horton P
    Planta; 1999 Oct; 209(4):517-27. PubMed ID: 10550634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinorotation affects the state of photosynthetic membranes in Arabidopsis thaliana (L.) Heynh.
    Kordyum E; Adamchuk N
    J Gravit Physiol; 1997 Jul; 4(2):P77-8. PubMed ID: 11540706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number.
    Ii JA; Webber AN
    Photosynth Res; 2005 Sep; 85(3):373-84. PubMed ID: 16170638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acclimation of Arabidopsis thaliana to the light environment: regulation of chloroplast composition.
    Walters RG; Horton P
    Planta; 1995; 197(3):475-81. PubMed ID: 8580761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroplast avoidance movement reduces photodamage in plants.
    Kasahara M; Kagawa T; Oikawa K; Suetsugu N; Miyao M; Wada M
    Nature; 2002 Dec 19-26; 420(6917):829-32. PubMed ID: 12490952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin cytoskeleton in Arabidopsis thaliana under blue and red light.
    Krzeszowiec W; Rajwa B; Dobrucki J; Gabryś H
    Biol Cell; 2007 May; 99(5):251-60. PubMed ID: 17253958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blue light-induced chloroplast relocation in Arabidopsis thaliana as analyzed by microbeam irradiation.
    Kagawa T; Wada M
    Plant Cell Physiol; 2000 Jan; 41(1):84-93. PubMed ID: 10750712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis.
    Goral TK; Johnson MP; Duffy CD; Brain AP; Ruban AV; Mullineaux CW
    Plant J; 2012 Jan; 69(2):289-301. PubMed ID: 21919982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of clinorotation on the leaf mesophyll structure and pigment content in Arabidopsis thaliana L. and Pisum sativum L.
    Adamchuk NI
    J Gravit Physiol; 2004 Jul; 11(2):P201-3. PubMed ID: 16240508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defects in leaf carbohydrate metabolism compromise acclimation to high light and lead to a high chlorophyll fluorescence phenotype in Arabidopsis thaliana.
    Schmitz J; Schöttler MA; Krueger S; Geimer S; Schneider A; Kleine T; Leister D; Bell K; Flügge UI; Häusler RE
    BMC Plant Biol; 2012 Jan; 12():8. PubMed ID: 22248311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A plant-specific protein essential for blue-light-induced chloroplast movements.
    DeBlasio SL; Luesse DL; Hangarter RP
    Plant Physiol; 2005 Sep; 139(1):101-14. PubMed ID: 16113226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana?
    Brelsford CC; Morales LO; Nezval J; Kotilainen TK; Hartikainen SM; Aphalo PJ; Robson TM
    Physiol Plant; 2019 Mar; 165(3):537-554. PubMed ID: 29704249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by photoreceptors and sugar.
    Kozuka T; Horiguchi G; Kim GT; Ohgishi M; Sakai T; Tsukaya H
    Plant Cell Physiol; 2005 Jan; 46(1):213-23. PubMed ID: 15659441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts.
    Jeong WJ; Park YI; Suh K; Raven JA; Yoo OJ; Liu JR
    Plant Physiol; 2002 May; 129(1):112-21. PubMed ID: 12011343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plastid movement impaired 2, a new gene involved in normal blue-light-induced chloroplast movements in Arabidopsis.
    Luesse DR; DeBlasio SL; Hangarter RP
    Plant Physiol; 2006 Aug; 141(4):1328-37. PubMed ID: 16778016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural and functional changes of photosynthetic apparatus of Arabidopsis thaliana (L.) Heynh induced by clinorotation.
    Adamchuk NI
    Adv Space Res; 1998; 21(8-9):1131-4. PubMed ID: 11541361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Induced Movements of Chloroplasts and Nuclei Are Regulated in Both Cp-Actin-Filament-Dependent and -Independent Manners in Arabidopsis thaliana.
    Suetsugu N; Higa T; Gotoh E; Wada M
    PLoS One; 2016; 11(6):e0157429. PubMed ID: 27310016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palisade cell shape affects the light-induced chloroplast movements and leaf photosynthesis.
    Gotoh E; Suetsugu N; Higa T; Matsushita T; Tsukaya H; Wada M
    Sci Rep; 2018 Jan; 8(1):1472. PubMed ID: 29367686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.