These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11144266)

  • 1. Analytical electron microscopical investigations on the apoplastic pathways of lanthanum transport in barley roots.
    Lehmann H; Stelzer R; Holzamer S; Kunz U; Gierth M
    Planta; 2000 Nov; 211(6):816-22. PubMed ID: 11144266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.
    Ranathunge K; Kim YX; Wassmann F; Kreszies T; Zeisler V; Schreiber L
    Ann Bot; 2017 Mar; 119(4):629-643. PubMed ID: 28065927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Casparian strips in needles are more solute permeable than endodermal transport barriers in roots of Pinus bungeana.
    Wu X; Lin J; Lin Q; Wang J; Schreiber L
    Plant Cell Physiol; 2005 Nov; 46(11):1799-808. PubMed ID: 16170202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for symplastic involvement in the radial movement of calcium in onion roots.
    Cholewa E; Peterson CA
    Plant Physiol; 2004 Apr; 134(4):1793-802. PubMed ID: 15064381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Casparian bands and suberin lamellae in exodermis of lateral roots: an important trait of roots system response to abiotic stress factors.
    Tylová E; Pecková E; Blascheová Z; Soukup A
    Ann Bot; 2017 Jul; 120(1):71-85. PubMed ID: 28605408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic acids promote the uptake of lanthanum by barley roots.
    Han F; Shan XQ; Zhang J; Xie YN; Pei ZG; Zhang SZ; Zhu YG; Wen B
    New Phytol; 2005 Feb; 165(2):481-92. PubMed ID: 15720659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fungal sheath of ectomycorrhizal pine roots: an apoplastic barrier for the entry of calcium, magnesium, and potassium into the root cortex?
    Bücking H; Kuhn AJ; Schröder WH; Heyser W
    J Exp Bot; 2002 Jul; 53(374):1659-69. PubMed ID: 12096105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The entry of ions and molecules into roots: an investigation using electron-opaque tracers.
    Robards AW; Robb ME
    Planta; 1974 Jan; 120(1):1-12. PubMed ID: 24442614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental effects on the maturation of the endodermis and multiseriate exodermis of Iris germanica roots.
    Meyer CJ; Seago JL; Peterson CA
    Ann Bot; 2009 Mar; 103(5):687-702. PubMed ID: 19151041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The casparian strip as a barrier to the movement of lanthanum in corn roots.
    Nagahashi G; Thomson WW; Leonard RT
    Science; 1974 Feb; 183(4125):670-1. PubMed ID: 17778842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suberized transport barriers in Arabidopsis, barley and rice roots: From the model plant to crop species.
    Kreszies T; Schreiber L; Ranathunge K
    J Plant Physiol; 2018 Aug; 227():75-83. PubMed ID: 29449027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity.
    Kreszies T; Eggels S; Kreszies V; Osthoff A; Shellakkutti N; Baldauf JA; Zeisler-Diehl VV; Hochholdinger F; Ranathunge K; Schreiber L
    Plant Cell Environ; 2020 Feb; 43(2):344-357. PubMed ID: 31762057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortex cell hydraulic conductivity, endodermal apoplastic barriers and root hydraulics change in barley (Hordeum vulgare L.) in response to a low supply of N and P.
    Armand T; Cullen M; Boiziot F; Li L; Fricke W
    Ann Bot; 2019 Nov; 124(6):1091-1107. PubMed ID: 31309230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water permeability and reflection coefficient of the outer part of young rice roots are differently affected by closure of water channels (aquaporins) or blockage of apoplastic pores.
    Ranathunge K; Kotula L; Steudle E; Lafitte R
    J Exp Bot; 2004 Feb; 55(396):433-47. PubMed ID: 14739266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses.
    Kreszies T; Shellakkutti N; Osthoff A; Yu P; Baldauf JA; Zeisler-Diehl VV; Ranathunge K; Hochholdinger F; Schreiber L
    New Phytol; 2019 Jan; 221(1):180-194. PubMed ID: 30055115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The exodermis: a variable apoplastic barrier.
    Hose E; Clarkson DT; Steudle E; Schreiber L; Hartung W
    J Exp Bot; 2001 Dec; 52(365):2245-64. PubMed ID: 11709575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localisation of expression of a high-affinity sulfate transporter in barley roots.
    Rae AL; Smith FW
    Planta; 2002 Aug; 215(4):565-8. PubMed ID: 12172838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suberized transport barriers in plant roots: the effect of silicon.
    Kreszies T; Kreszies V; Ly F; Thangamani PD; Shellakkutti N; Schreiber L
    J Exp Bot; 2020 Dec; 71(21):6799-6806. PubMed ID: 32333766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apoplastic transport of abscisic acid through roots of maize: effect of the exodermis.
    Freundl E; Steudle E; Hartung W
    Planta; 2000 Jan; 210(2):222-31. PubMed ID: 10664128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can Ca2+ fluxes to the root xylem be sustained by Ca2+-ATPases in exodermal and endodermal plasma membranes?
    Hayter ML; Peterson CA
    Plant Physiol; 2004 Dec; 136(4):4318-25. PubMed ID: 15531711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.