BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 11144362)

  • 1. Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices.
    Voets T
    Neuron; 2000 Nov; 28(2):537-45. PubMed ID: 11144362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early requirement for alpha-SNAP and NSF in the secretory cascade in chromaffin cells.
    Xu T; Ashery U; Burgoyne RD; Neher E
    EMBO J; 1999 Jun; 18(12):3293-304. PubMed ID: 10369670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment.
    Nagy G; Matti U; Nehring RB; Binz T; Rettig J; Neher E; Sørensen JB
    J Neurosci; 2002 Nov; 22(21):9278-86. PubMed ID: 12417653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices.
    Voets T; Neher E; Moser T
    Neuron; 1999 Jul; 23(3):607-15. PubMed ID: 10433271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis.
    Xu T; Rammner B; Margittai M; Artalejo AR; Neher E; Jahn R
    Cell; 1999 Dec; 99(7):713-22. PubMed ID: 10619425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells.
    Tian JH; Wu ZX; Unzicker M; Lu L; Cai Q; Li C; Schirra C; Matti U; Stevens D; Deng C; Rettig J; Sheng ZH
    J Neurosci; 2005 Nov; 25(45):10546-55. PubMed ID: 16280592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells.
    Ashery U; Varoqueaux F; Voets T; Betz A; Thakur P; Koch H; Neher E; Brose N; Rettig J
    EMBO J; 2000 Jul; 19(14):3586-96. PubMed ID: 10899113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid recovery of releasable vesicles and formation of nonreleasable endosomes follow intense exocytosis in chromaffin cells.
    Perez Bay AE; Ibañez LI; Marengo FD
    Am J Physiol Cell Physiol; 2007 Nov; 293(5):C1509-22. PubMed ID: 17686997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly Ca2+-sensitive pool of vesicles is regulated by protein kinase C in adrenal chromaffin cells.
    Yang Y; Udayasankar S; Dunning J; Chen P; Gillis KD
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):17060-5. PubMed ID: 12446844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming.
    Cai H; Reim K; Varoqueaux F; Tapechum S; Hill K; Sørensen JB; Brose N; Chow RH
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19538-43. PubMed ID: 19033464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-localization of vesicles and P/Q Ca2+-channels explains the preferential distribution of exocytotic active zones in neurites emitted by bovine chromaffin cells.
    Gil A; Viniegra S; Neco P; Gutiérrez LM
    Eur J Cell Biol; 2001 May; 80(5):358-65. PubMed ID: 11432726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct secretory vesicle-priming steps in adrenal chromaffin cells.
    Liu Y; Schirra C; Edelmann L; Matti U; Rhee J; Hof D; Bruns D; Brose N; Rieger H; Stevens DR; Rettig J
    J Cell Biol; 2010 Sep; 190(6):1067-77. PubMed ID: 20855507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SNAP-25 regulation during adrenal gland development: comparison with differentiation markers and other SNAREs.
    Hepp R; Grant NJ; Aunis D; Langley K
    J Comp Neurol; 2000 Jun; 421(4):533-42. PubMed ID: 10842212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotransmitter release from bovine adrenal chromaffin cells is modulated by capacitative Ca(2+)entry driven by depleted internal Ca(2+)stores.
    Zerbes M; Clark CL; Powis DA
    Cell Calcium; 2001 Jan; 29(1):49-58. PubMed ID: 11133355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium regulates exocytosis at the level of single vesicles.
    Becherer U; Moser T; Stühmer W; Oheim M
    Nat Neurosci; 2003 Aug; 6(8):846-53. PubMed ID: 12845327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential regulation of exocytosis by alpha- and beta-SNAPs.
    Xu J; Xu Y; Ellis-Davies GC; Augustine GJ; Tse FW
    J Neurosci; 2002 Jan; 22(1):53-61. PubMed ID: 11756488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles.
    Liu Y; Schirra C; Stevens DR; Matti U; Speidel D; Hof D; Bruns D; Brose N; Rettig J
    J Neurosci; 2008 May; 28(21):5594-601. PubMed ID: 18495893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trachynilysin mediates SNARE-dependent release of catecholamines from chromaffin cells via external and stored Ca2+.
    Meunier FA; Mattei C; Chameau P; Lawrence G; Colasante C; Kreger AS; Dolly JO; Molgó J
    J Cell Sci; 2000 Apr; 113 ( Pt 7)():1119-25. PubMed ID: 10704363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The readily releasable pool of vesicles in chromaffin cells is replenished in a temperature-dependent manner and transiently overfills at 37 degrees C.
    Dinkelacker V; Voets T; Neher E; Moser T
    J Neurosci; 2000 Nov; 20(22):8377-83. PubMed ID: 11069944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I.
    Voets T; Moser T; Lund PE; Chow RH; Geppert M; Südhof TC; Neher E
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11680-5. PubMed ID: 11562488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.