BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11144586)

  • 1. A concept for a research tool for experiments with cochlear implant users.
    Geurts L; Wouters J
    J Acoust Soc Am; 2000 Dec; 108(6):2949-56. PubMed ID: 11144586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer interface for psychophysical and speech research with the Nucleus cochlear implant.
    Shannon RV; Adams DD; Ferrel RL; Palumbo RL; Grandgenett M
    J Acoust Soc Am; 1990 Feb; 87(2):905-7. PubMed ID: 2307784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [How does a cochlear implant speech processor work?].
    Adunka O; Kiefer J
    Laryngorhinootologie; 2005 Nov; 84(11):841-50; quiz 851-4. PubMed ID: 16358193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algorithms, hardware, and software for a digital signal processor microcomputer-based speech processor in a multielectrode cochlear implant system.
    Morris LR; Barszczewski P
    IEEE Trans Biomed Eng; 1989 Jun; 36(6):573-84. PubMed ID: 2731944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of adult Nucleus® 5 cochlear implant users to the Nucleus® 6 system.
    De Ceulaer G; Swinnen F; Pascoal D; Philips B; Killian M; James C; Govaerts PJ; Dhooge I
    Cochlear Implants Int; 2015 Jul; 16(4):222-32. PubMed ID: 25284643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital speech processing for cochlear implants.
    Dillier N; Bögli H; Spillmann T
    ORL J Otorhinolaryngol Relat Spec; 1992; 54(6):299-307. PubMed ID: 1475099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible auditory research platform using acoustic or electric stimuli for adults and young children.
    Laneau J; Boets B; Moonen M; van Wieringen A; Wouters J
    J Neurosci Methods; 2005 Mar; 142(1):131-6. PubMed ID: 15652626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship Between Peripheral and Psychophysical Measures of Amplitude Modulation Detection in Cochlear Implant Users.
    Tejani VD; Abbas PJ; Brown CJ
    Ear Hear; 2017; 38(5):e268-e284. PubMed ID: 28207576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech discrimination via cochlear implants with two different digital speech processing strategies: preliminary results for 7 patients.
    Dillier N; Bögli H; Spillmann T
    Scand Audiol Suppl; 1993; 38():145-53. PubMed ID: 8153560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recording and analysis of electrically evoked compound action potentials (ECAPs) with MED-EL cochlear implants and different artifact reduction strategies in Matlab.
    Bahmer A; Peter O; Baumann U
    J Neurosci Methods; 2010 Aug; 191(1):66-74. PubMed ID: 20558202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital signal processing (DSP) applications for multiband loudness correction digital hearing aids and cochlear implants.
    Dillier N; Frölich T; Kompis M; Bögli H; Lai WK
    J Rehabil Res Dev; 1993; 30(1):95-109. PubMed ID: 8263833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [CILAB--a PC-based laboratory speech processor for implementation and evaluation of new stimulation strategies for cochlear implants].
    Mitterbacher A; Lampacher P; Zierhofer C; Hochmair E
    Biomed Tech (Berl); 2004 Jun; 49(6):146-52. PubMed ID: 15279463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A PDA platform for offline processing and streaming of stimuli for cochlear implant research.
    Ali H; Lobo AP; Loizou PC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1045-8. PubMed ID: 22254492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experiences of the use of FOX, an intelligent agent, for programming cochlear implant sound processors in new users.
    Vaerenberg B; Govaerts PJ; de Ceulaer G; Daemers K; Schauwers K
    Int J Audiol; 2011 Jan; 50(1):50-8. PubMed ID: 21091083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nucleus multi-channel implantable hearing prosthesis.
    Crosby PA; Seligman PM; Patrick JF; Kuzma JA; Money DK; Ridler J; Dowell R
    Acta Otolaryngol Suppl; 1984; 411():111-4. PubMed ID: 6596833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Converted and upgraded maps programmed in the newer speech processor for the first generation of multichannel cochlear implant.
    Magalhães AT; Goffi-Gomez MV; Hoshino AC; Tsuji RK; Bento RF; Brito R
    Otol Neurotol; 2013 Sep; 34(7):1193-200. PubMed ID: 23921918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.
    Winn MB; Won JH; Moon IJ
    Ear Hear; 2016; 37(6):e377-e390. PubMed ID: 27438871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of input processing and type of personal frequency modulation system on speech-recognition performance of adults with cochlear implants.
    Wolfe J; Schafer E; Parkinson A; John A; Hudson M; Wheeler J; Mucci A
    Ear Hear; 2013; 34(1):52-62. PubMed ID: 22941405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A software tool for analyzing multichannel cochlear implant signals.
    Lai WK; Bögli H; Dillier N
    Ear Hear; 2003 Oct; 24(5):380-91. PubMed ID: 14534409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multicentre clinical evaluation of paediatric cochlear implant users upgrading to the Nucleus(®) 6 system.
    Plasmans A; Rushbrooke E; Moran M; Spence C; Theuwis L; Zarowski A; Offeciers E; Atkinson B; McGovern J; Dornan D; Leigh J; Kaicer A; Hollow R; Martelli L; Looi V; Nel E; Del Dot J; Cowan R; Mauger SJ
    Int J Pediatr Otorhinolaryngol; 2016 Apr; 83():193-9. PubMed ID: 26968076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.