These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11144754)

  • 1. Estimation and detection of event-related fMRI signals with temporally correlated noise: a statistically efficient and unbiased approach.
    Burock MA; Dale AM
    Hum Brain Mapp; 2000 Dec; 11(4):249-60. PubMed ID: 11144754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient design of event-related fMRI experiments using M-sequences.
    Buracas GT; Boynton GM
    Neuroimage; 2002 Jul; 16(3 Pt 1):801-13. PubMed ID: 12169264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconvolution of event-related fMRI responses in fast-rate experimental designs: tracking amplitude variations.
    Hinrichs H; Scholz M; Tempelmann C; Woldorff MG; Dale AM; Heinze HJ
    J Cogn Neurosci; 2000; 12 Suppl 2():76-89. PubMed ID: 11506649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of confounding variables on hemodynamic response function estimation using averaging and deconvolution analysis: An event-related NIRS study.
    Aarabi A; Osharina V; Wallois F
    Neuroimage; 2017 Jul; 155():25-49. PubMed ID: 28450140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hidden Markov event sequence models: toward unsupervised functional MRI brain mapping.
    Faisan S; Thoraval L; Armspach JP; Foucher JR; Metz-Lutz MN; Heitz F
    Acad Radiol; 2005 Jan; 12(1):25-36. PubMed ID: 15691723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advantages and disadvantages of a fast fMRI sequence in the context of EEG-fMRI investigation of epilepsy patients: A realistic simulation study.
    Safi-Harb M; Proulx S; von Ellenrieder N; Gotman J
    Neuroimage; 2015 Oct; 119():20-32. PubMed ID: 26093328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comment on the severity of the effects of non-white noise in fMRI time-series.
    Smith AT; Singh KD; Balsters JH
    Neuroimage; 2007 Jun; 36(2):282-8. PubMed ID: 17098446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation of BOLD hemodynamic responses across subjects and brain regions and their effects on statistical analyses.
    Handwerker DA; Ollinger JM; D'Esposito M
    Neuroimage; 2004 Apr; 21(4):1639-51. PubMed ID: 15050587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cluster failure revisited: Impact of first level design and physiological noise on cluster false positive rates.
    Eklund A; Knutsson H; Nichols TE
    Hum Brain Mapp; 2019 May; 40(7):2017-2032. PubMed ID: 30318709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of speech-related variance in rapid event-related fMRI using a time-aware acquisition system.
    Mehta S; Grabowski TJ; Razavi M; Eaton B; Bolinger L
    Neuroimage; 2006 Feb; 29(4):1278-93. PubMed ID: 16412665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auto-adaptive averaging: detecting artifacts in event-related potential data using a fully automated procedure.
    Talsma D
    Psychophysiology; 2008 Mar; 45(2):216-28. PubMed ID: 17971060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ERP omitted stimulus response to "no-stim" events and its implications for fast-rate event-related fMRI designs.
    Busse L; Woldorff MG
    Neuroimage; 2003 Apr; 18(4):856-64. PubMed ID: 12725762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ROC analysis of statistical methods used in functional MRI: individual subjects.
    Skudlarski P; Constable RT; Gore JC
    Neuroimage; 1999 Mar; 9(3):311-29. PubMed ID: 10075901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency, power, and entropy in event-related FMRI with multiple trial types. Part I: theory.
    Liu TT; Frank LR
    Neuroimage; 2004 Jan; 21(1):387-400. PubMed ID: 14741676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the hemodynamic response: effects of presentation rate, sampling procedure, and the possibility of ordering brain activity based on relative timing.
    Miezin FM; Maccotta L; Ollinger JM; Petersen SE; Buckner RL
    Neuroimage; 2000 Jun; 11(6 Pt 1):735-59. PubMed ID: 10860799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of methods for characterizing the event-related BOLD timeseries in rapid fMRI.
    Serences JT
    Neuroimage; 2004 Apr; 21(4):1690-700. PubMed ID: 15050591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised learning and mapping of active brain functional MRI signals based on hidden semi-Markov event sequence models.
    Faisan S; Thoraval L; Armspach JP; Metz-Lutz MN; Heitz F
    IEEE Trans Med Imaging; 2005 Feb; 24(2):263-76. PubMed ID: 15707252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministic and stochastic features of fMRI data: implications for analysis of event-related experiments.
    McKeown MJ; Varadarajan V; Huettel S; McCarthy G
    J Neurosci Methods; 2002 Aug; 118(2):103-13. PubMed ID: 12204302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster-level statistical inference in fMRI datasets: The unexpected behavior of random fields in high dimensions.
    Bansal R; Peterson BS
    Magn Reson Imaging; 2018 Jun; 49():101-115. PubMed ID: 29408478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Making the most of fMRI at 7 T by suppressing spontaneous signal fluctuations.
    Bianciardi M; van Gelderen P; Duyn JH; Fukunaga M; de Zwart JA
    Neuroimage; 2009 Jan; 44(2):448-54. PubMed ID: 18835582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.