BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 11144971)

  • 21. [Metabolism of recombinant CHO-GS cell reducing of toxic effect of ammonia].
    Zhang F; Yi XP; Sun XM; Zhang YX
    Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):94-100. PubMed ID: 16572847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Perfusion flow rate substantially contributes to the performance of the HepaRG-AMC-bioartificial liver.
    Nibourg GA; Boer JD; van der Hoeven TV; Ackermans MT; van Gulik TM; Chamuleau RA; Hoekstra R
    Biotechnol Bioeng; 2012 Dec; 109(12):3182-8. PubMed ID: 22729831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of ammonia and lactate through the coupling of glutamine synthetase selection and downregulation of lactate dehydrogenase-A in CHO cells.
    Noh SM; Park JH; Lim MS; Kim JW; Lee GM
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1035-1045. PubMed ID: 27704181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ammonia removal using hepatoma cells in mammalian cell cultures.
    Choi YS; Lee DY; Kim IY; Kang S; Ahn K; Kim HJ; Jeong YH; Chun GT; Park JK; Kim IH
    Biotechnol Prog; 2000; 16(5):760-8. PubMed ID: 11027167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies.
    Yu DY; Lee SY; Lee GM
    Biotechnol Bioeng; 2018 May; 115(5):1367-1372. PubMed ID: 29359789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The newly established human hepatocyte cell line: application for the bioartificial liver.
    Harimoto N; Taketomi A; Kitagawa D; Kuroda Y; Itoh S; Gion T; Tanaka S; Shirabe K; Shimada M; Maehara Y
    J Hepatol; 2005 Apr; 42(4):557-64. PubMed ID: 15763342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies.
    Noh SM; Shin S; Lee GM
    Sci Rep; 2018 Mar; 8(1):5361. PubMed ID: 29599455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integration of single-layer skin hollow fibers and scaffolds develops a three-dimensional hybrid bioreactor for bioartificial livers.
    Zhang S; Chen L; Liu T; Wang Z; Wang Y
    J Mater Sci Mater Med; 2014 Jan; 25(1):207-16. PubMed ID: 23963686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Regulation of glutamine metabolism in Chlorella pyrenoidosa. Mechanisms of regulating the activity of glutamine synthetase during ammonia assimilation].
    Akimova NI; Evstigneeva ZG; Kretovich VL
    Biokhimiia; 1976; 41(7):1306-12. PubMed ID: 11843
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional regulation of the rat glutamine synthetase gene by tumor necrosis factor-alpha.
    Chakrabarti R
    Eur J Biochem; 1998 May; 254(1):70-4. PubMed ID: 9652396
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased hepatic functionality of the human hepatoma cell line HepaRG cultured in the AMC bioreactor.
    Nibourg GA; Hoekstra R; van der Hoeven TV; Ackermans MT; Hakvoort TB; van Gulik TM; Chamuleau RA
    Int J Biochem Cell Biol; 2013 Aug; 45(8):1860-8. PubMed ID: 23770120
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FOXO1 activates glutamine synthetase gene in mouse skeletal muscles through a region downstream of 3'-UTR: possible contribution to ammonia detoxification.
    Kamei Y; Hattori M; Hatazawa Y; Kasahara T; Kanou M; Kanai S; Yuan X; Suganami T; Lamers WH; Kitamura T; Ogawa Y
    Am J Physiol Endocrinol Metab; 2014 Sep; 307(6):E485-93. PubMed ID: 25074987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous recovery of dual pathways for ammonia metabolism do not improve further detoxification of ammonia in HepG2 cells.
    Zhang FY; Tang NH; Wang XQ; Li XJ; Chen YL
    Hepatobiliary Pancreat Dis Int; 2013 Oct; 12(5):525-32. PubMed ID: 24103284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Review of a flat membrane bioreactor as a bioartificial liver.
    De Bartolo L; Bader A
    Ann Transplant; 2001; 6(3):40-6. PubMed ID: 11899896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [¹³N]Ammonia positron emission tomographic/computed tomographic imaging targeting glutamine synthetase expression in prostate cancer.
    Shi X; Zhang X; Yi C; Liu Y; He Q
    Mol Imaging; 2014; 13():. PubMed ID: 25431095
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipopolysaccharide-induced tyrosine nitration and inactivation of hepatic glutamine synthetase in the rat.
    Görg B; Wettstein M; Metzger S; Schliess F; Häussinger D
    Hepatology; 2005 May; 41(5):1065-73. PubMed ID: 15830392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rapid establishment of high-producing cell lines using dicistronic vectors with glutamine synthetase as the selection marker.
    Pu H; Cashion LM; Kretschmer PJ; Liu Z
    Mol Biotechnol; 1998 Aug; 10(1):17-25. PubMed ID: 9779420
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-transcriptional inhibition of glutamine synthetase induction in rat liver epithelial cells exerted by conditioned medium from rat hepatocytes.
    Haupt W; Gaunitz F; Gebhardt R
    Life Sci; 2000 Nov; 67(26):3191-8. PubMed ID: 11191626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of glutamine synthetase activity by [13N]ammonia uptake in living rat brain.
    Momosaki S; Ito M; Tonomura M; Abe K
    Synapse; 2015 Jan; 69(1):26-32. PubMed ID: 25196365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glutamine synthetase of Streptomyces cattleya: purification and regulation of synthesis.
    Paress PS; Streicher SL
    J Gen Microbiol; 1985 Aug; 131(8):1903-10. PubMed ID: 2865328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.