BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 11145599)

  • 1. Developmental exposure to estrogens alters epithelial cell adhesion and gap junction proteins in the adult rat prostate.
    Habermann H; Chang WY; Birch L; Mehta P; Prins GS
    Endocrinology; 2001 Jan; 142(1):359-69. PubMed ID: 11145599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neonatal estrogen exposure induces lobe-specific alterations in adult rat prostate androgen receptor expression.
    Prins GS
    Endocrinology; 1992 Jun; 130(6):3703-14. PubMed ID: 1597166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinoic acid receptors and retinoids are up-regulated in the developing and adult rat prostate by neonatal estrogen exposure.
    Prins GS; Chang WY; Wang Y; van Breemen RB
    Endocrinology; 2002 Sep; 143(9):3628-40. PubMed ID: 12193579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of neonatal estrogens on rat prostate development.
    Prins GS; Birch L; Habermann H; Chang WY; Tebeau C; Putz O; Bieberich C
    Reprod Fertil Dev; 2001; 13(4):241-52. PubMed ID: 11800163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neonatal estrogen exposure induces lobe-specific alterations in adult rat prostate androgen receptor expression.
    Prins GS
    Endocrinology; 1992 Apr; 130(4):2401-12. PubMed ID: 1547747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of neonatal estrogen exposure on prostatic secretory genes and their correlation with androgen receptor expression in the separate prostate lobes of the adult rat.
    Prins GS; Woodham C; Lepinske M; Birch L
    Endocrinology; 1993 Jun; 132(6):2387-98. PubMed ID: 8504743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estrogen receptor-beta messenger ribonucleic acid ontogeny in the prostate of normal and neonatally estrogenized rats.
    Prins GS; Marmer M; Woodham C; Chang W; Kuiper G; Gustafsson JA; Birch L
    Endocrinology; 1998 Mar; 139(3):874-83. PubMed ID: 9492016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neonatal estrogen down-regulates prostatic androgen receptor through a proteosome-mediated protein degradation pathway.
    Woodham C; Birch L; Prins GS
    Endocrinology; 2003 Nov; 144(11):4841-50. PubMed ID: 12960060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The developmental pattern of androgen receptor expression in rat prostate lobes is altered after neonatal exposure to estrogen.
    Prins GS; Birch L
    Endocrinology; 1995 Mar; 136(3):1303-14. PubMed ID: 7867585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estrogen imprinting of the developing prostate gland is mediated through stromal estrogen receptor alpha: studies with alphaERKO and betaERKO mice.
    Prins GS; Birch L; Couse JF; Choi I; Katzenellenbogen B; Korach KS
    Cancer Res; 2001 Aug; 61(16):6089-97. PubMed ID: 11507058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of human prostate cancer cell growth by forced expression of connexin genes.
    Mehta PP; Perez-Stable C; Nadji M; Mian M; Asotra K; Roos BA
    Dev Genet; 1999; 24(1-2):91-110. PubMed ID: 10079514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neonatal estrogen exposure up-regulates estrogen receptor expression in the developing and adult rat prostate lobes.
    Prins GS; Birch L
    Endocrinology; 1997 May; 138(5):1801-9. PubMed ID: 9112371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neonatal estrogen exposure alters the transforming growth factor-beta signaling system in the developing rat prostate and blocks the transient p21(cip1/waf1) expression associated with epithelial differentiation.
    Chang WY; Birch L; Woodham C; Gold LI; Prins GS
    Endocrinology; 1999 Jun; 140(6):2801-13. PubMed ID: 10342871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in gap junction protein expression in human benign prostatic hyperplasia and prostate cancer.
    Habermann H; Ray V; Habermann W; Prins GS
    J Urol; 2001 Dec; 166(6):2267-72. PubMed ID: 11696749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neonatal estrogen stimulates proliferation of periductal fibroblasts and alters the extracellular matrix composition in the rat prostate.
    Chang WY; Wilson MJ; Birch L; Prins GS
    Endocrinology; 1999 Jan; 140(1):405-15. PubMed ID: 9886852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland.
    Mroue R; Inman J; Mott J; Budunova I; Bissell MJ
    Dev Biol; 2015 Mar; 399(1):15-26. PubMed ID: 25500615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Decreased expression of Cx32 and Cx43 and their function of gap junction intercellular communication in gastric cancer].
    Wu J; Zhou HF; Wang CH; Zhang B; Liu D; Wang W; Sui GJ
    Zhonghua Zhong Liu Za Zhi; 2007 Oct; 29(10):742-7. PubMed ID: 18396685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of rat liver gap junction intercellular communication by tumor-promoting agents in vivo. Association with aberrant localization of connexin proteins.
    Krutovskikh VA; Mesnil M; Mazzoleni G; Yamasaki H
    Lab Invest; 1995 May; 72(5):571-7. PubMed ID: 7745951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterocellular gap junctional communication between alveolar epithelial cells.
    Abraham V; Chou ML; George P; Pooler P; Zaman A; Savani RC; Koval M
    Am J Physiol Lung Cell Mol Physiol; 2001 Jun; 280(6):L1085-93. PubMed ID: 11350787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential control of connexin-32 and connexin-43 expression in thyroid epithelial cells: evidence for a direct relationship between connexin-32 expression and histiotypic morphogenesis.
    Munari-Silem Y; Guerrier A; Fromaget C; Rabilloud R; Gros D; Rousset B
    Endocrinology; 1994 Aug; 135(2):724-34. PubMed ID: 8033821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.