These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
464 related articles for article (PubMed ID: 11145710)
1. Actin filaments are involved in the regulation of trafficking of two closely related chemokine receptors, CXCR1 and CXCR2. Zaslaver A; Feniger-Barish R; Ben-Baruch A J Immunol; 2001 Jan; 166(2):1272-84. PubMed ID: 11145710 [TBL] [Abstract][Full Text] [Related]
2. Intracellular trafficking of human CXCR1 and CXCR2: regulation by receptor domains and actin-related kinases. Matityahu E; Feniger-Barish R; Meshel T; Zaslaver A; Ben-Baruch A Eur J Immunol; 2002 Dec; 32(12):3525-35. PubMed ID: 12442335 [TBL] [Abstract][Full Text] [Related]
3. Intracellular cross-talk between the GPCR CXCR1 and CXCR2: role of carboxyl terminus phosphorylation sites. Attal H; Cohen-Hillel E; Meshel T; Wang JM; Gong W; Ben-Baruch A Exp Cell Res; 2008 Jan; 314(2):352-65. PubMed ID: 17996233 [TBL] [Abstract][Full Text] [Related]
4. Differential modes of regulation of cxc chemokine-induced internalization and recycling of human CXCR1 and CXCR2. Feniger-Barish R; Ran M; Zaslaver A; Ben-Baruch A Cytokine; 1999 Dec; 11(12):996-1009. PubMed ID: 10623425 [TBL] [Abstract][Full Text] [Related]
5. GCP-2-induced internalization of IL-8 receptors: hierarchical relationships between GCP-2 and other ELR(+)-CXC chemokines and mechanisms regulating CXCR2 internalization and recycling. Feniger-Barish R; Belkin D; Zaslaver A; Gal S; Dori M; Ran M; Ben-Baruch A Blood; 2000 Mar; 95(5):1551-9. PubMed ID: 10688807 [TBL] [Abstract][Full Text] [Related]
6. Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. Richardson RM; Marjoram RJ; Barak LS; Snyderman R J Immunol; 2003 Mar; 170(6):2904-11. PubMed ID: 12626541 [TBL] [Abstract][Full Text] [Related]
7. Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Wuyts A; Proost P; Lenaerts JP; Ben-Baruch A; Van Damme J; Wang JM Eur J Biochem; 1998 Jul; 255(1):67-73. PubMed ID: 9692902 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological characterization of Sch527123, a potent allosteric CXCR1/CXCR2 antagonist. Gonsiorek W; Fan X; Hesk D; Fossetta J; Qiu H; Jakway J; Billah M; Dwyer M; Chao J; Deno G; Taveras A; Lundell DJ; Hipkin RW J Pharmacol Exp Ther; 2007 Aug; 322(2):477-85. PubMed ID: 17496166 [TBL] [Abstract][Full Text] [Related]
9. Rabbit neutrophil chemotactic protein (NCP) activates both CXCR1 and CXCR2 and is the functional homologue for human CXCL6. Catusse J; Struyf S; Wuyts A; Weyler M; Loos T; Gijsbers K; Gouwy M; Proost P; Van Damme J Biochem Pharmacol; 2004 Nov; 68(10):1947-55. PubMed ID: 15476666 [TBL] [Abstract][Full Text] [Related]
10. The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions. Raghuwanshi SK; Su Y; Singh V; Haynes K; Richmond A; Richardson RM J Immunol; 2012 Sep; 189(6):2824-32. PubMed ID: 22869904 [TBL] [Abstract][Full Text] [Related]
11. Cloning and characterization of guinea pig CXCR1. Takahashi M; Jeevan A; Sawant K; McMurray DN; Yoshimura T Mol Immunol; 2007 Feb; 44(5):878-88. PubMed ID: 16712933 [TBL] [Abstract][Full Text] [Related]
12. Differential cross-regulation of the human chemokine receptors CXCR1 and CXCR2. Evidence for time-dependent signal generation. Richardson RM; Pridgen BC; Haribabu B; Ali H; Snyderman R J Biol Chem; 1998 Sep; 273(37):23830-6. PubMed ID: 9726994 [TBL] [Abstract][Full Text] [Related]
13. The collagen-breakdown product N-acetyl-Proline-Glycine-Proline (N-alpha-PGP) does not interact directly with human CXCR1 and CXCR2. de Kruijf P; Lim HD; Overbeek SA; Zaman GJ; Kraneveld AD; Folkerts G; Leurs R; Smit MJ Eur J Pharmacol; 2010 Sep; 643(1):29-33. PubMed ID: 20599927 [TBL] [Abstract][Full Text] [Related]
14. Decreased CXCR1 and CXCR2 expression on neutrophils in anti-neutrophil cytoplasmic autoantibody-associated vasculitides potentially increases neutrophil adhesion and impairs migration. Hu N; Westra J; Rutgers A; Doornbos-Van der Meer B; Huitema MG; Stegeman CA; Abdulahad WH; Satchell SC; Mathieson PW; Heeringa P; Kallenberg CG Arthritis Res Ther; 2011; 13(6):R201. PubMed ID: 22152684 [TBL] [Abstract][Full Text] [Related]
15. Metalloproteinases are involved in lipopolysaccharide- and tumor necrosis factor-alpha-mediated regulation of CXCR1 and CXCR2 chemokine receptor expression. Khandaker MH; Mitchell G; Xu L; Andrews JD; Singh R; Leung H; Madrenas J; Ferguson SS; Feldman RD; Kelvin DJ Blood; 1999 Apr; 93(7):2173-85. PubMed ID: 10090924 [TBL] [Abstract][Full Text] [Related]
16. IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. Schraufstatter IU; Chung J; Burger M Am J Physiol Lung Cell Mol Physiol; 2001 Jun; 280(6):L1094-103. PubMed ID: 11350788 [TBL] [Abstract][Full Text] [Related]
17. Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2. Wolf M; Delgado MB; Jones SA; Dewald B; Clark-Lewis I; Baggiolini M Eur J Immunol; 1998 Jan; 28(1):164-70. PubMed ID: 9485196 [TBL] [Abstract][Full Text] [Related]
18. Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. Nasser MW; Raghuwanshi SK; Grant DJ; Jala VR; Rajarathnam K; Richardson RM J Immunol; 2009 Sep; 183(5):3425-32. PubMed ID: 19667085 [TBL] [Abstract][Full Text] [Related]
19. Cysteine-rich 61 (CCN1) enhances chemotactic migration, transendothelial cell migration, and intravasation by concomitantly up-regulating chemokine receptor 1 and 2. Lin BR; Chang CC; Chen LR; Wu MH; Wang MY; Kuo IH; Chu CY; Chang KJ; Lee PH; Chen WJ; Kuo ML; Lin MT Mol Cancer Res; 2007 Nov; 5(11):1111-23. PubMed ID: 18025257 [TBL] [Abstract][Full Text] [Related]
20. Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2. Doroshenko T; Chaly Y; Savitskiy V; Maslakova O; Portyanko A; Gorudko I; Voitenok NN Blood; 2002 Oct; 100(7):2668-71. PubMed ID: 12239185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]