BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 11145998)

  • 21. Inhibition of tyrosine phosphorylation attenuates amino acid neurotransmitter release from the ischemic/reperfused rat cerebral cortex.
    Phillis JW; Song D; O'Regan MH
    Neurosci Lett; 1996 Apr; 207(3):151-4. PubMed ID: 8728472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino acid and purine release in rat brain following temporary middle cerebral artery occlusion.
    Phillis JW; Smith-Barbour M; O'Regan MH; Perkins LM
    Neurochem Res; 1994 Sep; 19(9):1125-30. PubMed ID: 7824064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of ischemia-evoked release of excitatory and inhibitory amino acids by adenosine A1 receptor agonist.
    Goda H; Ooboshi H; Nakane H; Ibayashi S; Sadoshima S; Fujishima M
    Eur J Pharmacol; 1998 Sep; 357(2-3):149-55. PubMed ID: 9797030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of hyperbaric oxygen on striatal metabolites: a microdialysis study in awake freely moving rats after MCA occlusion.
    Badr AE; Yin W; Mychaskiw G; Zhang JH
    Brain Res; 2001 Oct; 916(1-2):85-90. PubMed ID: 11597594
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free radicals and the ischemia-evoked extracellular accumulation of amino acids in rat cerebral cortex.
    O'Regan MH; Song D; VanderHeide SJ; Phillis JW
    Neurochem Res; 1997 Mar; 22(3):273-80. PubMed ID: 9051661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex.
    Phillis JW; O'Regan MH
    Neurochem Int; 2003; 43(4-5):461-7. PubMed ID: 12742092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The metabolism of C-glucose by neurons and astrocytes in brain subregions following focal cerebral ischemia in rats.
    Thoren AE; Helps SC; Nilsson M; Sims NR
    J Neurochem; 2006 May; 97(4):968-78. PubMed ID: 16606370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyposmotically induced amino acid release from the rat cerebral cortex: role of phospholipases and protein kinases.
    Estevez AY; O'Regan MH; Song D; Phillis JW
    Brain Res; 1999 Oct; 844(1-2):1-9. PubMed ID: 10536255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of hypothermia on amino acid neurotransmitter release from the cerebral cortex.
    Simpson RE; Walter GA; Phillis JW
    Neurosci Lett; 1991 Mar; 124(1):83-6. PubMed ID: 1677460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preischemic hyperglycemia-aggravated damage: evidence that lactate utilization is beneficial and glucose-induced corticosterone release is detrimental.
    Schurr A; Payne RS; Miller JJ; Tseng MT
    J Neurosci Res; 2001 Dec; 66(5):782-9. PubMed ID: 11746402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concomitant increases in the extracellular concentrations of excitatory and inhibitory amino acids in the rat hippocampus during forebrain ischemia.
    Lekieffre D; Callebert J; Plotkine M; Boulu RG
    Neurosci Lett; 1992 Mar; 137(1):78-82. PubMed ID: 1352633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study.
    Shijo K; Sutton RL; Ghavim SS; Harris NG; Bartnik-Olson BL
    Neurochem Int; 2017 Jan; 102():66-78. PubMed ID: 27919624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glutamate, glutamine, and GABA as substrates for the neuronal and glial compartments after focal cerebral ischemia in rats.
    Pascual JM; Carceller F; Roda JM; Cerdán S
    Stroke; 1998 May; 29(5):1048-56; discussion 1056-7. PubMed ID: 9596256
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Failure of kynurenic acid to inhibit amino acid release from the ischemic rat cerebral cortex.
    Phillis JW; Song D; Guyot LL; O'Regan MH
    Neurosci Lett; 1999 Sep; 273(1):21-4. PubMed ID: 10505642
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation.
    Rae C; Hare N; Bubb WA; McEwan SR; Bröer A; McQuillan JA; Balcar VJ; Conigrave AD; Bröer S
    J Neurochem; 2003 Apr; 85(2):503-14. PubMed ID: 12675927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. (13)C MR spectroscopy study of lactate as substrate for rat brain.
    Qu H; Håberg A; Haraldseth O; Unsgård G; Sonnewald U
    Dev Neurosci; 2000; 22(5-6):429-36. PubMed ID: 11111159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo.
    Patel AB; de Graaf RA; Mason GF; Rothman DL; Shulman RG; Behar KL
    Proc Natl Acad Sci U S A; 2005 Apr; 102(15):5588-93. PubMed ID: 15809416
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutamate-induced modulation in energy metabolism contributes to protection of rat cortical slices against ischemia-induced damage.
    Gul Z; Buyukuysal RL
    Neuroreport; 2021 Jan; 32(2):157-162. PubMed ID: 33323837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Melittin enhances amino acid and free fatty acid release from the in vivo cerebral cortex.
    Phillis JW; Song D; O'Regan MH
    Brain Res; 1999 Nov; 847(2):270-5. PubMed ID: 10575097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy substrate requirements of rat retinal pigmented epithelial cells in culture: relative importance of glucose, amino acids, and monocarboxylates.
    Wood JP; Chidlow G; Graham M; Osborne NN
    Invest Ophthalmol Vis Sci; 2004 Apr; 45(4):1272-80. PubMed ID: 15037596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.