BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 11146487)

  • 1. Effect of hyperoxia, hypercapnia, and hypoxia on cerebral interstitial oxygen tension and cerebral blood flow.
    Duong TQ; Iadecola C; Kim SG
    Magn Reson Med; 2001 Jan; 45(1):61-70. PubMed ID: 11146487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cerebrovascular responses to hyperoxia and hypercapnia using MRI in rat.
    Lu J; Dai G; Egi Y; Huang S; Kwon SJ; Lo EH; Kim YR
    Neuroimage; 2009 May; 45(4):1126-34. PubMed ID: 19118633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of tolbutamide on cerebral blood flow during hypoxia and hypercapnia in the anaesthetized rat.
    Reid JM; Paterson DJ; Ashcroft FM; Bergel DH
    Pflugers Arch; 1993 Nov; 425(3-4):362-4. PubMed ID: 8309797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Test-retest reliability of cerebral blood flow and blood oxygenation level-dependent responses to hypercapnia and hyperoxia using dual-echo pseudo-continuous arterial spin labeling and step changes in the fractional composition of inspired gases.
    Tancredi FB; Lajoie I; Hoge RD
    J Magn Reson Imaging; 2015 Oct; 42(4):1144-57. PubMed ID: 25752936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats.
    Duong TQ
    Brain Res; 2007 Mar; 1135(1):186-94. PubMed ID: 17198686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cerebral arteriovenous vasoactive exchange during alterations in arterial blood gases.
    Peebles KC; Richards AM; Celi L; McGrattan K; Murrell CJ; Ainslie PN
    J Appl Physiol (1985); 2008 Oct; 105(4):1060-8. PubMed ID: 18617625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia.
    Ainslie PN; Shaw AD; Smith KJ; Willie CK; Ikeda K; Graham J; Macleod DB
    Clin Sci (Lond); 2014 May; 126(9):661-70. PubMed ID: 24117382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral oxidative metabolism is decreased with extreme apnoea in humans; impact of hypercapnia.
    Bain AR; Ainslie PN; Hoiland RL; Barak OF; Cavar M; Drvis I; Stembridge M; MacLeod DM; Bailey DM; Dujic Z; MacLeod DB
    J Physiol; 2016 Sep; 594(18):5317-28. PubMed ID: 27256521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of K+ in regulating hypoxic cerebral blood flow in the rat: effect of glibenclamide and ouabain.
    Reid JM; Paterson DJ
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H45-52. PubMed ID: 8769733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia.
    Geiser MH; Riva CE; Dorner GT; Diermann U; Luksch A; Schmetterer L
    Curr Eye Res; 2000 Aug; 21(2):669-76. PubMed ID: 11148604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia, hyperoxia, ischemia, and brain necrosis.
    Miyamoto O; Auer RN
    Neurology; 2000 Jan; 54(2):362-71. PubMed ID: 10668697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of the cerebral vascular response to hypoxia and hypercapnia using quantitative perfusion MRI at 3 T.
    Nöth U; Kotajima F; Deichmann R; Turner R; Corfield DR
    NMR Biomed; 2008 Jun; 21(5):464-72. PubMed ID: 17854023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraventricular dexmedetomidine decreases cerebral blood flow during normoxia and hypoxia in dogs.
    McPherson RW; Koehler RC; Kirsch JR; Traystman RJ
    Anesth Analg; 1997 Jan; 84(1):139-47. PubMed ID: 8989015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of hypoxia and hypercapnia on cerebral hemodynamics and brain electrical activity in dogs.
    McPherson RW; Eimerl D; Traystman RJ
    Am J Physiol; 1987 Oct; 253(4 Pt 2):H890-7. PubMed ID: 3661738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative changes of cerebral arterial and venous blood volumes during increased cerebral blood flow: implications for BOLD fMRI.
    Lee SP; Duong TQ; Yang G; Iadecola C; Kim SG
    Magn Reson Med; 2001 May; 45(5):791-800. PubMed ID: 11323805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II contributes to cerebral vasodilatation during hypoxia in the rabbit.
    Maktabi MA; Todd MM; Stachovic G
    Stroke; 1995 Oct; 26(10):1871-6. PubMed ID: 7570741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of isocapnic hyperoxia on neurophysiology as measured with MRI and MEG.
    Croal PL; Hall EL; Driver ID; Brookes MJ; Gowland PA; Francis ST
    Neuroimage; 2015 Jan; 105():323-31. PubMed ID: 25462687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral PtO2, acute hypoxia, and volatile anesthetics in the rat brain.
    Hou H; Grinberg OY; Grinberg SA; Khan N; Dunn JF; Swartz HM
    Adv Exp Med Biol; 2005; 566():179-85. PubMed ID: 16594151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional distribution of cerebral blood volume and cerebral blood flow in newborn piglets--effect of hypoxia/hypercapnia.
    Bauer R; Bergmann R; Walter B; Brust P; Zwiener U; Johannsen B
    Brain Res Dev Brain Res; 1999 Jan; 112(1):89-98. PubMed ID: 9974162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in resting cerebrovascular regulation do not affect reactivity to hypoxia, hyperoxia or neurovascular coupling following a SCUBA dive.
    Caldwell HG; Hoiland RL; Barak OF; Mijacika T; Burma JS; Dujić Ž; Ainslie PN
    Exp Physiol; 2020 Sep; 105(9):1540-1549. PubMed ID: 32618374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.