These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 11146488)

  • 1. Interregional variation of longitudinal relaxation rates in human brain at 3.0 T: relation to estimated iron and water contents.
    Gelman N; Ewing JR; Gorell JM; Spickler EM; Solomon EG
    Magn Reson Med; 2001 Jan; 45(1):71-9. PubMed ID: 11146488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content.
    Gelman N; Gorell JM; Barker PB; Savage RM; Spickler EM; Windham JP; Knight RA
    Radiology; 1999 Mar; 210(3):759-67. PubMed ID: 10207479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of brain iron concentration in vivo using a linear relationship between regional iron and apparent transverse relaxation rate of the tissue water at 4.7T.
    Mitsumori F; Watanabe H; Takaya N
    Magn Reson Med; 2009 Nov; 62(5):1326-30. PubMed ID: 19780172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T2 relaxation time in patients with Parkinson's disease.
    Antonini A; Leenders KL; Meier D; Oertel WH; Boesiger P; Anliker M
    Neurology; 1993 Apr; 43(4):697-700. PubMed ID: 8469325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping.
    Liu M; Liu S; Ghassaban K; Zheng W; Dicicco D; Miao Y; Habib C; Jazmati T; Haacke EM
    J Magn Reson Imaging; 2016 Jul; 44(1):59-71. PubMed ID: 26695834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemisphere, gender and age-related effects on iron deposition in deep gray matter revealed by quantitative susceptibility mapping.
    Gong NJ; Wong CS; Hui ES; Chan CC; Leung LM
    NMR Biomed; 2015 Oct; 28(10):1267-74. PubMed ID: 26313542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative MR imaging of brain iron: a postmortem validation study.
    Langkammer C; Krebs N; Goessler W; Scheurer E; Ebner F; Yen K; Fazekas F; Ropele S
    Radiology; 2010 Nov; 257(2):455-62. PubMed ID: 20843991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of R2 with total iron concentration in the brains of rhesus monkeys.
    Hardy PA; Gash D; Yokel R; Andersen A; Ai Y; Zhang Z
    J Magn Reson Imaging; 2005 Feb; 21(2):118-27. PubMed ID: 15666406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes in brain T1 are correlated with iron concentration.
    Ogg RJ; Steen RG
    Magn Reson Med; 1998 Nov; 40(5):749-53. PubMed ID: 9797159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis.
    Daugherty A; Raz N
    Neuroimage; 2013 Apr; 70():113-21. PubMed ID: 23277110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the iron concentration in excised gray matter by means of proton relaxation measurements.
    Ye FQ; Martin W; Allen PS
    Magn Reson Med; 1996 Mar; 35(3):285-9. PubMed ID: 8699938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron deposition in the gray matter in patients with relapse-remitting multiple sclerosis: A longitudinal study using three-dimensional (3D)-enhanced T2*-weighted angiography (ESWAN).
    Du S; Sah SK; Zeng C; Wang J; Liu Y; Xiong H; Li Y
    Eur J Radiol; 2015 Jul; 84(7):1325-32. PubMed ID: 25959392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal MR imaging of iron in multiple sclerosis: an imaging marker of disease.
    Walsh AJ; Blevins G; Lebel RM; Seres P; Emery DJ; Wilman AH
    Radiology; 2014 Jan; 270(1):186-96. PubMed ID: 23925273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MR detection of brain iron.
    Thomas LO; Boyko OB; Anthony DC; Burger PC
    AJNR Am J Neuroradiol; 1993; 14(5):1043-8. PubMed ID: 8237678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age distribution and iron dependency of the T2 relaxation time in the globus pallidus and putamen.
    Schenker C; Meier D; Wichmann W; Boesiger P; Valavanis A
    Neuroradiology; 1993; 35(2):119-24. PubMed ID: 8433786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of magnetic resonance imaging for in vivo measurements of water content in human brain: method and normal values.
    Fatouros PP; Marmarou A
    J Neurosurg; 1999 Jan; 90(1):109-15. PubMed ID: 10413163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased iron accumulation occurs in the earliest stages of demyelinating disease: an ultra-high field susceptibility mapping study in Clinically Isolated Syndrome.
    Al-Radaideh AM; Wharton SJ; Lim SY; Tench CR; Morgan PS; Bowtell RW; Constantinescu CS; Gowland PA
    Mult Scler; 2013 Jun; 19(7):896-903. PubMed ID: 23139386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apparent transverse relaxation rate in human brain varies linearly with tissue iron concentration at 4.7 T.
    Mitsumori F; Watanabe H; Takaya N; Garwood M
    Magn Reson Med; 2007 Nov; 58(5):1054-60. PubMed ID: 17969101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Are there gender differences in iron contents of adult brain: an in vivo susceptibility weighted imaging study].
    Xu XJ; Wang QD; Zhang MM
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2008 Sep; 37(5):477-82. PubMed ID: 18925715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.