BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 11146620)

  • 1. Coordination of microtubules and the actin cytoskeleton by the Rho effector mDia1.
    Ishizaki T; Morishima Y; Okamoto M; Furuyashiki T; Kato T; Narumiya S
    Nat Cell Biol; 2001 Jan; 3(1):8-14. PubMed ID: 11146620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FHOD1 coordinates actin filament and microtubule alignment to mediate cell elongation.
    Gasteier JE; Schroeder S; Muranyi W; Madrid R; Benichou S; Fackler OT
    Exp Cell Res; 2005 May; 306(1):192-202. PubMed ID: 15878344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microtubule dynamics differentially regulates Rho and Rac activity and triggers Rho-independent stress fiber formation in macrophage polykaryons.
    Ory S; Destaing O; Jurdic P
    Eur J Cell Biol; 2002 Jun; 81(6):351-62. PubMed ID: 12113476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and mechanistic insights into the interaction between Rho and mammalian Dia.
    Rose R; Weyand M; Lammers M; Ishizaki T; Ahmadian MR; Wittinghofer A
    Nature; 2005 May; 435(7041):513-8. PubMed ID: 15864301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fhos, a mammalian formin, directly binds to F-actin via a region N-terminal to the FH1 domain and forms a homotypic complex via the FH2 domain to promote actin fiber formation.
    Takeya R; Sumimoto H
    J Cell Sci; 2003 Nov; 116(Pt 22):4567-75. PubMed ID: 14576350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization.
    Copeland JW; Treisman R
    Mol Biol Cell; 2002 Nov; 13(11):4088-99. PubMed ID: 12429848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization.
    Watanabe N; Kato T; Fujita A; Ishizaki T; Narumiya S
    Nat Cell Biol; 1999 Jul; 1(3):136-43. PubMed ID: 10559899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Actin polymerization-driven molecular movement of mDia1 in living cells.
    Higashida C; Miyoshi T; Fujita A; Oceguera-Yanez F; Monypenny J; Andou Y; Narumiya S; Watanabe N
    Science; 2004 Mar; 303(5666):2007-10. PubMed ID: 15044801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center.
    Rumsby M; Afsari F; Stark M; Hughson E
    Glia; 2003 Apr; 42(2):118-29. PubMed ID: 12655596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae.
    Imamura H; Tanaka K; Hihara T; Umikawa M; Kamei T; Takahashi K; Sasaki T; Takai Y
    EMBO J; 1997 May; 16(10):2745-55. PubMed ID: 9184220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formin-1 protein associates with microtubules through a peptide domain encoded by exon-2.
    Zhou F; Leder P; Martin SS
    Exp Cell Res; 2006 Apr; 312(7):1119-26. PubMed ID: 16480715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The plant formin AtFH4 interacts with both actin and microtubules, and contains a newly identified microtubule-binding domain.
    Deeks MJ; Fendrych M; Smertenko A; Bell KS; Oparka K; Cvrcková F; Zársky V; Hussey PJ
    J Cell Sci; 2010 Apr; 123(Pt 8):1209-15. PubMed ID: 20332108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin filament bundling and different nucleating effects of mouse Diaphanous-related formin FH2 domains on actin/ADF and actin/cofilin complexes.
    Machaidze G; Sokoll A; Shimada A; Lustig A; Mazur A; Wittinghofer A; Aebi U; Mannherz HG
    J Mol Biol; 2010 Nov; 403(4):529-45. PubMed ID: 20869367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antiepileptic teratogen valproic acid (VPA) modulates organisation and dynamics of the actin cytoskeleton.
    Walmod PS; Skladchikova G; Kawa A; Berezin V; Bock E
    Cell Motil Cytoskeleton; 1999; 42(3):241-55. PubMed ID: 10098937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic interaction of formin proteins and cytoskeleton in mouse oocytes during meiotic maturation.
    Kwon S; Shin H; Lim HJ
    Mol Hum Reprod; 2011 May; 17(5):317-27. PubMed ID: 20971793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential interactions of the formins INF2, mDia1, and mDia2 with microtubules.
    Gaillard J; Ramabhadran V; Neumanne E; Gurel P; Blanchoin L; Vantard M; Higgs HN
    Mol Biol Cell; 2011 Dec; 22(23):4575-87. PubMed ID: 21998204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the autoinhibitory switch in formin mDia1.
    Nezami AG; Poy F; Eck MJ
    Structure; 2006 Feb; 14(2):257-63. PubMed ID: 16472745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FGF-2 induced reorganization and disruption of actin cytoskeleton through PI 3-kinase, Rho, and Cdc42 in corneal endothelial cells.
    Lee HT; Kay EP
    Mol Vis; 2003 Dec; 9():624-34. PubMed ID: 14685150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts.
    Destaing O; Saltel F; Gilquin B; Chabadel A; Khochbin S; Ory S; Jurdic P
    J Cell Sci; 2005 Jul; 118(Pt 13):2901-11. PubMed ID: 15976449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brefeldin A (BFA) disrupts the organization of the microtubule and the actin cytoskeletons.
    Alvarez C; Sztul ES
    Eur J Cell Biol; 1999 Jan; 78(1):1-14. PubMed ID: 10082419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.