BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 11147829)

  • 1. Inositol polyphosphates regulate Ca2+ efflux in a cardiac membrane subtype distinct from junctional sarcoplasmic reticulum.
    Quist EE; Quist CW; Vasan R
    Arch Biochem Biophys; 2000 Dec; 384(1):181-9. PubMed ID: 11147829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inositol tetrakisphosphate stimulates a novel ATP-independent Ca2+ uptake mechanism in cardiac junctional sarcoplasmic reticulum.
    Quist EE; Foresman BH; Vasan R; Quist CW
    Biochem Biophys Res Commun; 1994 Oct; 204(1):69-75. PubMed ID: 7945394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Steady-state calcium accumulation and its reduction by caffeine in sarcoplasmic reticulum from masseter muscle].
    Saito G
    Kanagawa Shigaku; 1989 Jun; 24(1):169-81. PubMed ID: 2562274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective inhibition of oxalate-stimulated Ca2+ transport by cyclopiazonic acid and thapsigargin in smooth muscle microsomes.
    Darby PJ; Kwan CY; Daniel EE
    Can J Physiol Pharmacol; 1996 Feb; 74(2):182-92. PubMed ID: 8723031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Ca2+ release from the sarcoplasmic reticulum of myocardium and vascular smooth muscle.
    Benevolensky DS; Menshikova EV; Watras J; Levitsky DO; Ritov VB
    Biomed Biochim Acta; 1987; 46(8-9):S393-8. PubMed ID: 3501718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate binding sites in smooth muscle.
    Zhang L; Bradley ME; Khoyi M; Westfall DP; Buxton IL
    Br J Pharmacol; 1993 Aug; 109(4):905-12. PubMed ID: 8401943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of a specific [3H]INS(1,4,5)P3 binding site in rat heart sarcoplasmic reticulum.
    Huisamen B; Mouton R; Opie LH; Lochner A
    J Mol Cell Cardiol; 1994 Mar; 26(3):341-9. PubMed ID: 8028017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ischemia on the fraction of ryanodine-sensitive cardiac sarcoplasmic reticulum.
    Wu QY; Feher JJ
    J Mol Cell Cardiol; 1997 May; 29(5):1363-73. PubMed ID: 9201622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of compound 48/80 on masseter muscle sarcoplasmic reticulum calcium transport system].
    Odajima C
    Kanagawa Shigaku; 1989 Dec; 24(3):431-9. PubMed ID: 2562276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells.
    Poulsen JC; Caspersen C; Mathiasen D; East JM; Tunwell RE; Lai FA; Maeda N; Mikoshiba K; Treiman M
    Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of mitochondrial calcium uptake rather than efflux impedes calcium release by inositol-1,4,5-trisphosphate-sensitive receptors.
    Chalmers S; McCarron JG
    Cell Calcium; 2009 Aug; 46(2):107-13. PubMed ID: 19577805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+-dependent oscillations in the calcium content of cardiac sarcoplasmic reticulum vesicles.
    Katz AM; Louis CF; Nash-Adler P; Messineo FC; Shigekawa M
    Adv Myocardiol; 1980; 1():173-7. PubMed ID: 7394331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure.
    Ai X; Curran JW; Shannon TR; Bers DM; Pogwizd SM
    Circ Res; 2005 Dec; 97(12):1314-22. PubMed ID: 16269653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation and distribution of inositol polyphosphate and Ryanodine receptors in the rat brain.
    Smith SM; Nahorski SR
    J Neurochem; 1993 May; 60(5):1605-14. PubMed ID: 8386220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead alters inositol polyphosphate receptor activities: protection by ATP.
    Vig PJ; Pentyala SN; Chetty CS; Rajanna B; Desaiah D
    Pharmacol Toxicol; 1994 Jul; 75(1):17-22. PubMed ID: 7971730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of phytoestrogens on sarcoplasmic/endoplasmic reticulum calcium ATPase 2a and Ca2+ uptake into cardiac sarcoplasmic reticulum.
    Olson ML; Kargacin ME; Honeyman TW; Ward CA; Kargacin GJ
    J Pharmacol Exp Ther; 2006 Feb; 316(2):628-35. PubMed ID: 16227472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Impaired calcium uptake by cardiac sarcoplasmic reticulum and its underlying mechanism during rat septic shock].
    Ji Y; Dong LW; Wu LL; Tang CS; Su JY
    Sheng Li Xue Bao; 1995 Aug; 47(4):336-42. PubMed ID: 7481874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of three sarcoplasmic/endoplasmic reticulum Ca++ pump inhibitors on release channels of intracellular stores.
    Dettbarn C; Palade P
    J Pharmacol Exp Ther; 1998 May; 285(2):739-45. PubMed ID: 9580621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Focal sarcoplasmic reticulum calcium stores and diffuse inositol 1,4,5-trisphosphate and ryanodine receptors in human myometrium.
    Young RC; Mathur SP
    Cell Calcium; 1999; 26(1-2):69-75. PubMed ID: 10892572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization, distribution and phylogenetic analysis of Drosophila melanogaster ryanodine and IP3 receptors, and thapsigargin-sensitive Ca2+ ATPase.
    Vázquez-Martínez O; Cañedo-Merino R; Díaz-Muñoz M; Riesgo-Escovar JR
    J Cell Sci; 2003 Jun; 116(Pt 12):2483-94. PubMed ID: 12766186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.