BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 11147966)

  • 21. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos.
    Lang L; Miskovic D; Fernando P; Heikkila JJ
    Dev Genet; 1999; 25(4):365-74. PubMed ID: 10570468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intracellular localization of Xenopus small heat shock protein, hsp30, in A6 kidney epithelial cells.
    Gellalchew M; Heikkila JJ
    Cell Biol Int; 2005 Mar; 29(3):221-7. PubMed ID: 15893480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells.
    Voyer J; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Oct; 151(2):253-61. PubMed ID: 18675372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli.
    Vickery LE; Silberg JJ; Ta DT
    Protein Sci; 1997 May; 6(5):1047-56. PubMed ID: 9144776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea.
    Lee GJ; Pokala N; Vierling E
    J Biol Chem; 1995 May; 270(18):10432-8. PubMed ID: 7737977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state.
    Lee GJ; Roseman AM; Saibil HR; Vierling E
    EMBO J; 1997 Feb; 16(3):659-71. PubMed ID: 9034347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions.
    Ballinger CA; Connell P; Wu Y; Hu Z; Thompson LJ; Yin LY; Patterson C
    Mol Cell Biol; 1999 Jun; 19(6):4535-45. PubMed ID: 10330192
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Some properties of human small heat shock protein Hsp20 (HspB6).
    Bukach OV; Seit-Nebi AS; Marston SB; Gusev NB
    Eur J Biochem; 2004 Jan; 271(2):291-302. PubMed ID: 14717697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinct patterns of HSP30 and HSP70 degradation in Xenopus laevis A6 cells recovering from thermal stress.
    Khan S; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Feb; 168():1-10. PubMed ID: 24231468
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biochemical analysis of a cytosolic small heat shock protein, NtHSP18.3, from Nicotiana tabacum.
    Yu JH; Kim KP; Park SM; Hong CB
    Mol Cells; 2005 Jun; 19(3):328-33. PubMed ID: 15995348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two distinct mechanisms operate in the reactivation of heat-denatured proteins by the mitochondrial Hsp70/Mdj1p/Yge1p chaperone system.
    Kubo Y; Tsunehiro T; Nishikawa S; Nakai M; Ikeda E; Toh-e A; Morishima N; Shibata T; Endo T
    J Mol Biol; 1999 Feb; 286(2):447-64. PubMed ID: 9973563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components.
    Schönfeld HJ; Schmidt D; Schröder H; Bukau B
    J Biol Chem; 1995 Feb; 270(5):2183-9. PubMed ID: 7836448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization.
    Morrow G; Inaguma Y; Kato K; Tanguay RM
    J Biol Chem; 2000 Oct; 275(40):31204-10. PubMed ID: 10896659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NH2-terminal stabilization of small heat shock protein structure: a comparison of two NH2-terminal deletion mutants of alphaA-crystallin.
    Yang C; Salerno JC; Koretz JF
    Mol Vis; 2005 Aug; 11():641-7. PubMed ID: 16145541
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of citrate synthase thermal aggregation in vitro by recombinant small heat shock proteins.
    Gong W; Yue M; Xie B; Wan F; Guo J
    J Microbiol Biotechnol; 2009 Dec; 19(12):1628-34. PubMed ID: 20075630
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression, purification, and molecular chaperone activity of plant recombinant small heat shock proteins.
    Lee GJ; Vierling E
    Methods Enzymol; 1998; 290():350-65. PubMed ID: 9534175
    [No Abstract]   [Full Text] [Related]  

  • 37. Comparison of regulatory and structural regions of the Xenopus laevis small heat-shock protein-encoding gene family.
    Krone PH; Snow A; Ali A; Pasternak JJ; Heikkila JJ
    Gene; 1992 Jan; 110(2):159-66. PubMed ID: 1537552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A critical motif for oligomerization and chaperone activity of bacterial alpha-heat shock proteins.
    Studer S; Obrist M; Lentze N; Narberhaus F
    Eur J Biochem; 2002 Jul; 269(14):3578-86. PubMed ID: 12135498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunodominant protein MIP_05962 from Mycobacterium indicus pranii displays chaperone activity.
    Sharma A; Equbal MJ; Pandey S; Sheikh JA; Ehtesham NZ; Hasnain SE; Chaudhuri TK
    FEBS J; 2017 May; 284(9):1338-1354. PubMed ID: 28296245
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation and function of small heat shock protein genes during amphibian development.
    Heikkila JJ
    J Cell Biochem; 2004 Nov; 93(4):672-80. PubMed ID: 15389874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.