BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 11148047)

  • 1. Amino acid residues in ribonuclease MC1 from bitter gourd seeds which are essential for uridine specificity.
    Numata T; Suzuki A; Yao M; Tanaka I; Kimura M
    Biochemistry; 2001 Jan; 40(2):524-30. PubMed ID: 11148047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structures of the ribonuclease MC1 mutants N71T and N71S in complex with 5'-GMP: structural basis for alterations in substrate specificity.
    Numata T; Suzuki A; Kakuta Y; Kimura K; Yao M; Tanaka I; Yoshida Y; Ueda T; Kimura M
    Biochemistry; 2003 May; 42(18):5270-8. PubMed ID: 12731868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structures of the ribonuclease MC1 from bitter gourd seeds, complexed with 2'-UMP or 3'-UMP, reveal structural basis for uridine specificity.
    Suzuki A; Yao M; Tanaka I; Numata T; Kikukawa S; Yamasaki N; Kimura M
    Biochem Biophys Res Commun; 2000 Aug; 275(2):572-6. PubMed ID: 10964705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Gln9 and Phe80 to substrate binding in ribonuclease MC1 from bitter gourd seeds.
    Numata T; Kimura M
    J Biochem; 2001 Nov; 130(5):621-6. PubMed ID: 11686924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and mutational analysis of amino acid residues involved in catalytic activity in a ribonuclease MC1 from the seeds of bitter gourd.
    Numata T; Kashiba T; Hino M; Funatsu G; Ishiguro M; Yamasaki N; Kimura M
    Biosci Biotechnol Biochem; 2000 Mar; 64(3):603-5. PubMed ID: 10803962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of a ribonuclease from the seeds of bitter gourd (Momordica charantia) at 1.75 A resolution.
    Nakagawa A; Tanaka I; Sakai R; Nakashima T; Funatsu G; Kimura M
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):253-60. PubMed ID: 10446375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing functional perfection in substructures of ribonuclease T1: double combinatorial random mutagenesis involving Asn43, Asn44, and Glu46 in the guanine binding loop.
    Kumar K; Walz FG
    Biochemistry; 2001 Mar; 40(12):3748-57. PubMed ID: 11297444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guanine binding site of the Nicotiana glutinosa ribonuclease NW revealed by X-ray crystallography.
    Kawano S; Kakuta Y; Kimura M
    Biochemistry; 2002 Dec; 41(51):15195-202. PubMed ID: 12484757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single amino acid substitution changes ribonuclease 4 from a uridine-specific to a cytidine-specific enzyme.
    Hofsteenge J; Moldow C; Vicentini AM; Zelenko O; Jarai-Kote Z; Neumann U
    Biochemistry; 1998 Jun; 37(26):9250-7. PubMed ID: 9649305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acids conserved at the C-terminal half of the ribonuclease T2 family contribute to protein stability of the enzymes.
    Kimura K; Numata T; Kakuta Y; Kimura M
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1748-57. PubMed ID: 15322360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Structures and functions of ribonucleases].
    Irie M
    Yakugaku Zasshi; 1997 Sep; 117(9):561-82. PubMed ID: 9357326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The complete amino acid sequence of ribonuclease from the seeds of bitter gourd (Momordica charantia).
    Ide H; Kimura M; Arai M; Funatsu G
    FEBS Lett; 1991 Jun; 284(2):161-4. PubMed ID: 2060635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia.
    Addepalli B; Lesner NP; Limbach PA
    RNA; 2015 Oct; 21(10):1746-56. PubMed ID: 26221047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic ribonuclease activities in ribonuclease and ribosome-inactivating proteins from the seeds of bitter gourd.
    Fong WP; Mock WY; Ng TB
    Int J Biochem Cell Biol; 2000 May; 32(5):571-7. PubMed ID: 10736572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNase MC2: a new Momordica charantia ribonuclease that induces apoptosis in breast cancer cells associated with activation of MAPKs and induction of caspase pathways.
    Fang EF; Zhang CZ; Fong WP; Ng TB
    Apoptosis; 2012 Apr; 17(4):377-87. PubMed ID: 22134530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the active site of L-aspartate oxidase by site-directed mutagenesis: role of basic residues in fumarate reduction.
    Tedeschi G; Ronchi S; Simonic T; Treu C; Mattevi A; Negri A
    Biochemistry; 2001 Apr; 40(15):4738-44. PubMed ID: 11294641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altering the purine specificity of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Tritrichomonas foetus by structure-based point mutations in the enzyme protein.
    Munagala NR; Wang CC
    Biochemistry; 1998 Nov; 37(47):16612-9. PubMed ID: 9843428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of poly C preferential ribonuclease from chicken liver.
    Hayano K; Iwama M; Sakamoto H; Watanabe H; Sanda A; Ohgi K; Irie M
    J Biochem; 1993 Jul; 114(1):156-62. PubMed ID: 8407869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residues involved in the catalysis, base specificity, and cytotoxicity of ribonuclease from Rana catesbeiana based upon mutagenesis and X-ray crystallography.
    Leu YJ; Chern SS; Wang SC; Hsiao YY; Amiraslanov I; Liaw YC; Liao YD
    J Biol Chem; 2003 Feb; 278(9):7300-9. PubMed ID: 12499382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for catalysis by onconase.
    Lee JE; Bae E; Bingman CA; Phillips GN; Raines RT
    J Mol Biol; 2008 Jan; 375(1):165-77. PubMed ID: 18001769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.