These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11148176)

  • 1. Interlaboratory study on thermal cycler performance in controlled PCR and random amplified polymorphic DNA analyses.
    Saunders GC; Dukes J; Parkes HC; Cornett JH
    Clin Chem; 2001 Jan; 47(1):47-55. PubMed ID: 11148176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting.
    Meunier JR; Grimont PA
    Res Microbiol; 1993 Jun; 144(5):373-9. PubMed ID: 8248630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance evaluation of thermal cyclers for PCR in a rapid cycling condition.
    Kim YH; Yang I; Bae YS; Park SR
    Biotechniques; 2008 Apr; 44(4):495-6, 498, 500 passim. PubMed ID: 18476814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variability of the random amplified polymorphic DNA assay among thermal cyclers, and effects of primer and DNA concentration.
    MacPherson JM; Eckstein PE; Scoles GJ; Gajadhar AA
    Mol Cell Probes; 1993 Aug; 7(4):293-9. PubMed ID: 8232346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable low-power thermal cycler with dual thin-film Pt heaters for a polymeric PCR chip.
    Jeong S; Lim J; Kim MY; Yeom J; Cho H; Lee H; Shin YB; Lee JH
    Biomed Microdevices; 2018 Jan; 20(1):14. PubMed ID: 29376193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings.
    Wong G; Wong I; Chan K; Hsieh Y; Wong S
    PLoS One; 2015; 10(7):e0131701. PubMed ID: 26146999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approach for assessing performance of PCR cyclers used for diagnostic testing.
    Schoder D; Schmalwieser A; Schauberger G; Hoorfar J; Kuhn M; Wagner M
    J Clin Microbiol; 2005 Jun; 43(6):2724-8. PubMed ID: 15956389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an optimized system for random amplified polymorphic DNA (RAPD)-analysis for genotypic mapping of Candida albicans strains.
    Holmberg K; Feroze F
    J Clin Lab Anal; 1996; 10(2):59-69. PubMed ID: 8852356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of DNA methylation changes by methylation-sensitive random amplified polymorphic DNA-polymerase chain reaction (MS-RAPD-PCR).
    Singh KP
    Methods Mol Biol; 2014; 1105():71-81. PubMed ID: 24623220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Toxicants-Induced Alterations in DNA Methylation by Methylation-Sensitive-Random Amplified Polymorphic DNA-Polymerase Chain Reaction (MS-RAPD-PCR).
    Singh KP
    Methods Mol Biol; 2020; 2102():213-224. PubMed ID: 31989557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization and reproducibility of random amplified polymorphic DNA in human.
    Benter T; Papadopoulos S; Pape M; Manns M; Poliwoda H
    Anal Biochem; 1995 Sep; 230(1):92-100. PubMed ID: 8585636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex PCR: rapid DNA cycling in a conventional thermal cycler.
    Markoulatos P; Siafakas N; Katsorchis T; Moncany M
    J Clin Lab Anal; 2003; 17(4):108-12. PubMed ID: 12784258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of melting curves as a novel approach for validation of real-time PCR instruments.
    Von Keyserling H; Bergmann T; Wiesel M; Kaufmann AM
    Biotechniques; 2011 Sep; 51(3):179-84. PubMed ID: 21906039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature distribution effects on micro-CFPCR performance.
    Chen PC; Nikitopoulos DE; Soper SA; Murphy MC
    Biomed Microdevices; 2008 Apr; 10(2):141-52. PubMed ID: 17896180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid PCR protocols for forensic DNA typing on six thermal cycling platforms.
    Butts EL; Vallone PM
    Electrophoresis; 2014 Nov; 35(21-22):3053-61. PubMed ID: 25043912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Battery Powered Portable Thermal Cycler for Continuous-Flow Polymerase Chain Reaction Diagnosis by Single Thermostatic Thermoelectric Cooler and Open-Loop Controller.
    Wu D; Wu W
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular analyses of Old World Leishmania RAPD markers and development of a PCR assay selective for parasites of the L. donovani species Complex.
    Hanafi R; Barhoumi M; Ali SB; Guizani I
    Exp Parasitol; 2001 Jun; 98(2):90-9. PubMed ID: 11465992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast multiplexed polymerase chain reaction for conventional and microfluidic short tandem repeat analysis.
    Giese H; Lam R; Selden R; Tan E
    J Forensic Sci; 2009 Nov; 54(6):1287-96. PubMed ID: 19840207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of multiplex polymerase chain reactions to indicate the accuracy of the annealing temperature of thermal cycling.
    Yang I; Kim YH; Byun JY; Park SR
    Anal Biochem; 2005 Mar; 338(2):192-200. PubMed ID: 15745739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of random-amplified polymorphic DNA producing amplicons up to 8500 bp and revealing intraspecies polymorphism in Leishmania infantum isolates.
    Diakou A; Dovas CI
    Anal Biochem; 2001 Jan; 288(2):195-200. PubMed ID: 11152590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.