These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 11148293)

  • 1. Cryptochromes are required for phytochrome signaling to the circadian clock but not for rhythmicity.
    Devlin PF; Kay SA
    Plant Cell; 2000 Dec; 12(12):2499-2510. PubMed ID: 11148293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis.
    Yanovsky MJ; Mazzella MA; Whitelam GC; Casal JJ
    J Biol Rhythms; 2001 Dec; 16(6):523-30. PubMed ID: 11760010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
    Casal JJ; Mazzella MA
    Plant Physiol; 1998 Sep; 118(1):19-25. PubMed ID: 9733522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development.
    Neff MM; Chory J
    Plant Physiol; 1998 Sep; 118(1):27-35. PubMed ID: 9733523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quadruple photoreceptor mutant still keeps track of time.
    Yanovsky MJ; Mazzella MA; Casal JJ
    Curr Biol; 2000 Aug; 10(16):1013-5. PubMed ID: 10985392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis.
    Tóth R; Kevei E; Hall A; Millar AJ; Nagy F; Kozma-Bognár L
    Plant Physiol; 2001 Dec; 127(4):1607-16. PubMed ID: 11743105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue.
    Wade HK; Bibikova TN; Valentine WJ; Jenkins GI
    Plant J; 2001 Mar; 25(6):675-85. PubMed ID: 11319034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interaction of phytochrome B and cryptochrome 2.
    Más P; Devlin PF; Panda S; Kay SA
    Nature; 2000 Nov; 408(6809):207-11. PubMed ID: 11089975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
    Somers DE; Devlin PF; Kay SA
    Science; 1998 Nov; 282(5393):1488-90. PubMed ID: 9822379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction.
    Mockler TC; Guo H; Yang H; Duong H; Lin C
    Development; 1999 May; 126(10):2073-82. PubMed ID: 10207133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants.
    Casal JJ
    Photochem Photobiol; 2000 Jan; 71(1):1-11. PubMed ID: 10649883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical coupling of phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development.
    Mazzella MA; Cerdán PD; Staneloni RJ; Casal JJ
    Development; 2001 Jun; 128(12):2291-9. PubMed ID: 11493548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. shl, a New set of Arabidopsis mutants with exaggerated developmental responses to available red, far-red, and blue light.
    Pepper AE; Seong-Kim M; Hebst SM; Ivey KN; Kwak SJ; Broyles DE
    Plant Physiol; 2001 Sep; 127(1):295-304. PubMed ID: 11553757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2.
    Vitaterna MH; Selby CP; Todo T; Niwa H; Thompson C; Fruechte EM; Hitomi K; Thresher RJ; Ishikawa T; Miyazaki J; Takahashi JS; Sancar A
    Proc Natl Acad Sci U S A; 1999 Oct; 96(21):12114-9. PubMed ID: 10518585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of photoperiodic flowering by Arabidopsis photoreceptors.
    Mockler T; Yang H; Yu X; Parikh D; Cheng YC; Dolan S; Lin C
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):2140-5. PubMed ID: 12578985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana.
    Ahmad M; Cashmore AR
    Plant J; 1997 Mar; 11(3):421-7. PubMed ID: 9107032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The blue light receptor cryptochrome 1 can act independently of phytochrome A and B in Arabidopsis thaliana.
    Poppe C; Sweere U; Drumm-Herrel H; Schäfer E
    Plant J; 1998 Nov; 16(4):465-71. PubMed ID: 9881166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic dissection of blue-light sensing in tomato using mutants deficient in cryptochrome 1 and phytochromes A, B1 and B2.
    Weller JL; Perrotta G; Schreuder ME; van Tuinen A; Koornneef M; Giuliano G; Kendrick RE
    Plant J; 2001 Feb; 25(4):427-40. PubMed ID: 11260499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.
    Zhu H; Sauman I; Yuan Q; Casselman A; Emery-Le M; Emery P; Reppert SM
    PLoS Biol; 2008 Jan; 6(1):e4. PubMed ID: 18184036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception.
    Sancar A
    Annu Rev Biochem; 2000; 69():31-67. PubMed ID: 10966452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.