These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11150127)

  • 1. Orange peel as an adsorbent in the removal of acid violet 17 (acid dye) from aqueous solutions.
    Sivaraj R; Namasivayam C; Kadirvelu K
    Waste Manag; 2001; 21(1):105-10. PubMed ID: 11150127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution: kinetic and equilibrium studies.
    Kadirvelu K; Karthika C; Vennilamani N; Pattabhi S
    Chemosphere; 2005 Aug; 60(8):1009-17. PubMed ID: 15993147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent.
    Pavan FA; Mazzocato AC; Gushikem Y
    Bioresour Technol; 2008 May; 99(8):3162-5. PubMed ID: 17692516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of dyes from colored textile wastewater by orange peel adsorbent: equilibrium and kinetic studies.
    Arami M; Limaee NY; Mahmoodi NM; Tabrizi NS
    J Colloid Interface Sci; 2005 Aug; 288(2):371-6. PubMed ID: 15927601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms.
    Bouaziz F; Koubaa M; Kallel F; Ghorbel RE; Chaabouni SE
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):56-65. PubMed ID: 28669804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull.
    Thinakaran N; Baskaralingam P; Pulikesi M; Panneerselvam P; Sivanesan S
    J Hazard Mater; 2008 Mar; 151(2-3):316-22. PubMed ID: 17689864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of malachite green from dye wastewater using neem sawdust by adsorption.
    Khattri SD; Singh MK
    J Hazard Mater; 2009 Aug; 167(1-3):1089-94. PubMed ID: 19268452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of dyes by a promising locally available agricultural solid waste: coir pith.
    Namasivayam C; Radhika R; Suba S
    Waste Manag; 2001; 21(4):381-7. PubMed ID: 11300538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of cationic dye from aqueous solution using jackfruit peel as non-conventional low-cost adsorbent.
    Hameed BH
    J Hazard Mater; 2009 Feb; 162(1):344-50. PubMed ID: 18572309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Garlic peel based mesoporous carbon nanospheres for an effective removal of malachite green dye from aqueous solutions: Detailed isotherms and kinetics.
    Pathania D; Bhat VS; Mannekote Shivanna J; Sriram G; Kurkuri M; Hegde G
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug; 276():121197. PubMed ID: 35381439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of direct blue-86 from aqueous solution by new activated carbon developed from orange peel.
    Nemr AE; Abdelwahab O; El-Sikaily A; Khaled A
    J Hazard Mater; 2009 Jan; 161(1):102-10. PubMed ID: 18455301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions.
    Rao MM; Rao GP; Seshaiah K; Choudary NV; Wang MC
    Waste Manag; 2008; 28(5):849-58. PubMed ID: 17416512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(AA-co-VPA) hydrogel cross-linked with N-maleyl chitosan as dye adsorbent: Isotherms, kinetics and thermodynamic investigation.
    Nakhjiri MT; Marandi GB; Kurdtabar M
    Int J Biol Macromol; 2018 Oct; 117():152-166. PubMed ID: 29802921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of Cu2+ and Cd2+ from aqueous solution by mercapto-acetic acid modified orange peel.
    Liang S; Guo X; Feng N; Tian Q
    Colloids Surf B Biointerfaces; 2009 Oct; 73(1):10-4. PubMed ID: 19477102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption.
    Santhi T; Manonmani S; Smitha T
    J Hazard Mater; 2010 Jul; 179(1-3):178-86. PubMed ID: 20303654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies.
    Dizge N; Aydiner C; Demirbas E; Kobya M; Kara S
    J Hazard Mater; 2008 Feb; 150(3):737-46. PubMed ID: 17574338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremoval of Basic Violet 3 and Acid Blue 93 by Pseudomonas putida and its adsorption isotherms and kinetics.
    Arunarani A; Chandran P; Ranganathan BV; Vasanthi NS; Sudheer Khan S
    Colloids Surf B Biointerfaces; 2013 Feb; 102():379-84. PubMed ID: 23010121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Batch removal of malachite green from aqueous solutions by adsorption on oil palm trunk fibre: equilibrium isotherms and kinetic studies.
    Hameed BH; El-Khaiary MI
    J Hazard Mater; 2008 Jun; 154(1-3):237-44. PubMed ID: 18022316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.
    Saeed A; Sharif M; Iqbal M
    J Hazard Mater; 2010 Jul; 179(1-3):564-72. PubMed ID: 20381962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of ethyl violet dye in aqueous solution by regenerated spent bleaching earth.
    Tsai WT; Chang YM; Lai CW; Lo CC
    J Colloid Interface Sci; 2005 Sep; 289(2):333-8. PubMed ID: 15922353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.