BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11150282)

  • 1. The feasibility of short automated static perimetry in children.
    Morales J; Brown SM
    Ophthalmology; 2001 Jan; 108(1):157-62. PubMed ID: 11150282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma.
    Patel DE; Cumberland PM; Walters BC; Russell-Eggitt I; Brookes J; Papadopoulos M; Khaw PT; Viswanathan AC; Garway-Heath D; Cortina-Borja M; Rahi JS;
    JAMA Ophthalmol; 2018 Feb; 136(2):155-161. PubMed ID: 29285534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility and outcome of automated kinetic perimetry in children.
    Wilscher S; Wabbels B; Lorenz B
    Graefes Arch Clin Exp Ophthalmol; 2010 Oct; 248(10):1493-500. PubMed ID: 20232076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility and outcome of automated static perimetry in children using continuous light increment perimetry (CLIP) and fast threshold strategy.
    Wabbels BK; Wilscher S
    Acta Ophthalmol Scand; 2005 Dec; 83(6):664-9. PubMed ID: 16396642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal values for Octopus tendency oriented perimetry in children 7 through 13 years old.
    Brown SM; Bradley JC; Monhart MJ; Baker DK
    Graefes Arch Clin Exp Ophthalmol; 2005 Sep; 243(9):886-93. PubMed ID: 15834603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between Tendency-Oriented Perimetry (TOP) and octopus threshold perimetry.
    Morales J; Weitzman ML; González de la Rosa M
    Ophthalmology; 2000 Jan; 107(1):134-42. PubMed ID: 10647732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Test-retest variability of blue-on-yellow perimetry is greater than white-on-white perimetry in normal subjects.
    Kwon YH; Park HJ; Jap A; Ugurlu S; Caprioli J
    Am J Ophthalmol; 1998 Jul; 126(1):29-36. PubMed ID: 9683146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated combined kinetic and static perimetry: an alternative to standard perimetry in patients with neuro-ophthalmic disease and glaucoma.
    Pineles SL; Volpe NJ; Miller-Ellis E; Galetta SL; Sankar PS; Shindler KS; Maguire MG
    Arch Ophthalmol; 2006 Mar; 124(3):363-9. PubMed ID: 16534056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Octopus 900 Automated Kinetic Perimetry versus Standard Automated Static Perimetry in Glaucoma Practice.
    Rowe FJ; Czanner G; Somerville T; Sood I; Sood D
    Curr Eye Res; 2021 Jan; 46(1):83-95. PubMed ID: 32564629
    [No Abstract]   [Full Text] [Related]  

  • 10. Feasibility of saccadic vector optokinetic perimetry: a method of automated static perimetry for children using eye tracking.
    Murray IC; Fleck BW; Brash HM; Macrae ME; Tan LL; Minns RA
    Ophthalmology; 2009 Oct; 116(10):2017-26. PubMed ID: 19560207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Optimal Perimetric Testing in Children (OPTIC): Feasibility, Reliability and Repeatability of Perimetry in Children.
    Patel DE; Cumberland PM; Walters BC; Russell-Eggitt I; Rahi JS;
    PLoS One; 2015; 10(6):e0130895. PubMed ID: 26091102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients.
    Hirasawa K; Takahashi N; Satou T; Kasahara M; Matsumura K; Shoji N
    Curr Eye Res; 2017 Aug; 42(8):1160-1168. PubMed ID: 28441081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The reliability of frequency-doubling perimetry in young children.
    Blumenthal EZ; Haddad A; Horani A; Anteby I
    Ophthalmology; 2004 Mar; 111(3):435-9. PubMed ID: 15019315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning effects among perimetric novices in frequency doubling technology perimetry.
    Joson PJ; Kamantigue ME; Chen PP
    Ophthalmology; 2002 Apr; 109(4):757-60. PubMed ID: 11927436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning effect and repeatability of automated kinetic perimetry in healthy participants.
    Hirasawa K; Shoji N
    Curr Eye Res; 2014 Sep; 39(9):928-37. PubMed ID: 24588228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal values of short-wavelength automated perimetry.
    Mojon DS; Zulauf M
    Ophthalmologica; 2003; 217(4):260-4. PubMed ID: 12792131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can Swedish interactive thresholding algorithm fast perimetry be used as an alternative to goldmann perimetry in neuro-ophthalmic practice?
    Szatmáry G; Biousse V; Newman NJ
    Arch Ophthalmol; 2002 Sep; 120(9):1162-73. PubMed ID: 12215089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry.
    Springer C; Bültmann S; Völcker HE; Rohrschneider K
    Ophthalmology; 2005 May; 112(5):848-54. PubMed ID: 15878065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of Optimal Perimetric Testing in Children (OPTIC): evaluation of kinetic approaches in childhood neuro-ophthalmic disease.
    Patel DE; Cumberland PM; Walters BC; Cortina-Borja M; Rahi JS;
    Br J Ophthalmol; 2019 Aug; 103(8):1085-1091. PubMed ID: 30232171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of an effective visual field testing strategy for a normal pediatric population.
    Akar Y; Yilmaz A; Yucel I
    Ophthalmologica; 2008; 222(5):329-33. PubMed ID: 18617757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.