These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 11151298)

  • 1. Quantitative developmental genetic analysis reveals that the ancestral dipteran wing vein prepattern is conserved in Drosophila melanogaster.
    Palsson A; Gibson G
    Dev Genes Evol; 2000 Dec; 210(12):617-22. PubMed ID: 11151298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Naturally segregating quantitative trait loci affecting wing shape of Drosophila melanogaster.
    Mezey JG; Houle D; Nuzhdin SV
    Genetics; 2005 Apr; 169(4):2101-13. PubMed ID: 15520257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative trait loci affecting components of wing shape in Drosophila melanogaster.
    Zimmerman E; Palsson A; Gibson G
    Genetics; 2000 Jun; 155(2):671-83. PubMed ID: 10835390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variation for the positioning of wing veins in Drosophila melanogaster.
    Birdsall K; Zimmerman E; Teeter K; Gibson G
    Evol Dev; 2000; 2(1):16-24. PubMed ID: 11256413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into the molecular mechanisms underlying diversified wing venation among insects.
    Shimmi O; Matsuda S; Hatakeyama M
    Proc Biol Sci; 2014 Aug; 281(1789):20140264. PubMed ID: 25009057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster.
    Dworkin I; Gibson G
    Genetics; 2006 Jul; 173(3):1417-31. PubMed ID: 16648592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of response to artificial selection on developmental stability of partial wing shape components in Drosophila melanogaster.
    Tsujino M; Takahashi KH
    Genetica; 2014 Apr; 142(2):177-84. PubMed ID: 24744255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic basis of wing morphogenesis in Drosophila: sexual dimorphism and non-allometric effects of shape variation.
    Carreira VP; Soto IM; Mensch J; Fanara JJ
    BMC Dev Biol; 2011 Jun; 11():32. PubMed ID: 21635778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns.
    True JR; Edwards KA; Yamamoto D; Carroll SB
    Curr Biol; 1999 Dec; 9(23):1382-91. PubMed ID: 10607562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Little effect of HSP90 inhibition on the quantitative wing traits variation in Drosophila melanogaster.
    Takahashi KH
    Genetica; 2017 Feb; 145(1):9-18. PubMed ID: 27909948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of polygenes affecting wing shape on chromosome 2 in Drosophila melanogaster.
    Weber K; Eisman R; Higgins S; Morey L; Patty A; Tausek M; Zeng ZB
    Genetics; 2001 Nov; 159(3):1045-57. PubMed ID: 11729152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel genetic capacitors and potentiators for the natural genetic variation of sensory bristles and their trait specificity in Drosophila melanogaster.
    Takahashi KH
    Mol Ecol; 2015 Nov; 24(22):5561-72. PubMed ID: 26441383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanisms underlying simplification of venation patterns in holometabolous insects.
    Banerjee TD; Monteiro A
    Development; 2020 Dec; 147(23):. PubMed ID: 33144394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent genetic complexity generated by developmental thresholds: the apterous locus in Drosophila melanogaster.
    Stevens ME; Bryant PJ
    Genetics; 1985 Jun; 110(2):281-97. PubMed ID: 3924726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of body-size variation on flight-related traits in latitudinal populations of Drosophila melanogaster.
    Bhan V; Parkash R; Aggarwal DD
    J Genet; 2014 Apr; 93(1):103-12. PubMed ID: 24840827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster.
    Weber K; Eisman R; Morey L; Patty A; Sparks J; Tausek M; Zeng ZB
    Genetics; 1999 Oct; 153(2):773-86. PubMed ID: 10511557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tests for the replication of an association between Egfr and natural variation in Drosophila melanogaster wing morphology.
    Palsson A; Dodgson J; Dworkin I; Gibson G
    BMC Genet; 2005 Aug; 6():44. PubMed ID: 16102176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila.
    Cook O; Biehs B; Bier E
    Development; 2004 May; 131(9):2113-24. PubMed ID: 15073155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engrailed gene dosage determines whether certain recessive cubitus interruptus alleles exhibit dominance of the adult wing phenotype in Drosophila.
    Locke J; Hanna S
    Dev Genet; 1996; 19(4):340-9. PubMed ID: 9023986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new paramutation-like example at the Delta gene of Drosophila.
    Capovilla M; Robichon A; Rassoulzadegan M
    PLoS One; 2017; 12(3):e0172780. PubMed ID: 28355214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.