BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 11152072)

  • 1. Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin.
    Achterholt S; Priefert H; Steinbüchel A
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):799-807. PubMed ID: 11152072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. Strain HR199.
    Overhage J; Priefert H; Steinbüchel A
    Appl Environ Microbiol; 1999 Nov; 65(11):4837-47. PubMed ID: 10543794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans.
    Plaggenborg R; Steinbüchel A; Priefert H
    FEMS Microbiol Lett; 2001 Nov; 205(1):9-16. PubMed ID: 11728709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.
    Kaur B; Chakraborty D; Kumar B
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8539-51. PubMed ID: 25077778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440.
    Plaggenborg R; Overhage J; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2003 Jun; 61(5-6):528-35. PubMed ID: 12764569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular characterization of genes of Pseudomonas sp. strain HR199 involved in bioconversion of vanillin to protocatechuate.
    Priefert H; Rabenhorst J; Steinbüchel A
    J Bacteriol; 1997 Apr; 179(8):2595-607. PubMed ID: 9098058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of the ferulic acid catabolic genes of Sphingomonas paucimobilis SYK-6.
    Masai E; Harada K; Peng X; Kitayama H; Katayama Y; Fukuda M
    Appl Environ Microbiol; 2002 Sep; 68(9):4416-24. PubMed ID: 12200295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing efficient vanillin biosynthesis system by regulating feruloyl-CoA synthetase and enoyl-CoA hydratase enzymes.
    Chen QH; Xie DT; Qiang S; Hu CY; Meng YH
    Appl Microbiol Biotechnol; 2022 Jan; 106(1):247-259. PubMed ID: 34893929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of two Streptomyces enzymes that convert ferulic acid to vanillin.
    Yang W; Tang H; Ni J; Wu Q; Hua D; Tao F; Xu P
    PLoS One; 2013; 8(6):e67339. PubMed ID: 23840666
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of vanillin by metabolically engineered Escherichia coli.
    Yoon SH; Li C; Kim JE; Lee SH; Yoon JY; Choi MS; Seo WT; Yang JK; Kim JY; Kim SW
    Biotechnol Lett; 2005 Nov; 27(22):1829-32. PubMed ID: 16314978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester.
    Gasson MJ; Kitamura Y; McLauchlan WR; Narbad A; Parr AJ; Parsons EL; Payne J; Rhodes MJ; Walton NJ
    J Biol Chem; 1998 Feb; 273(7):4163-70. PubMed ID: 9461612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FCS and ECH dependent production of phenolic aldehyde and melanin pigment from l-tyrosine in Escherichia coli.
    Jang S; Gang H; Kim BG; Choi KY
    Enzyme Microb Technol; 2018 May; 112():59-64. PubMed ID: 29499781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.
    Di Gioia D; Luziatelli F; Negroni A; Ficca AG; Fava F; Ruzzi M
    J Biotechnol; 2011 Dec; 156(4):309-16. PubMed ID: 21875627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM.
    Chakraborty D; Gupta G; Kaur B
    Protein Expr Purif; 2016 Dec; 128():123-33. PubMed ID: 27591788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Engineering of the Actinomycete Amycolatopsis sp. Strain ATCC 39116 towards Enhanced Production of Natural Vanillin.
    Fleige C; Meyer F; Steinbüchel A
    Appl Environ Microbiol; 2016 Jun; 82(11):3410-3419. PubMed ID: 27037121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid.
    Graf N; Altenbuchner J
    Appl Microbiol Biotechnol; 2014 Jan; 98(1):137-49. PubMed ID: 24136472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of recombinant Pediococcus acidilactici BD16 (fcs
    Chakraborty D; Selvam A; Kaur B; Wong JWC; Karthikeyan OP
    Appl Microbiol Biotechnol; 2017 Jul; 101(14):5615-5626. PubMed ID: 28432440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of Vanillin by Rational Design of Enoyl-CoA Hydratase/Lyase.
    Ye Q; Xu W; He Y; Li H; Zhao F; Zhang J; Song Y
    Int J Mol Sci; 2023 Sep; 24(17):. PubMed ID: 37686435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin.
    Fleige C; Hansen G; Kroll J; Steinbüchel A
    Appl Environ Microbiol; 2013 Jan; 79(1):81-90. PubMed ID: 23064333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.