BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 11152129)

  • 1. Homology modeling and molecular dynamics simulations of lymphotactin.
    Buyong ; Xiong J; Lubkowski J; Nussinov R
    Protein Sci; 2000 Nov; 9(11):2192-9. PubMed ID: 11152129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An engineered second disulfide bond restricts lymphotactin/XCL1 to a chemokine-like conformation with XCR1 agonist activity.
    Tuinstra RL; Peterson FC; Elgin ES; Pelzek AJ; Volkman BF
    Biochemistry; 2007 Mar; 46(10):2564-73. PubMed ID: 17302442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monomeric solution structure of the prototypical 'C' chemokine lymphotactin.
    Kuloglu ES; McCaslin DR; Kitabwalla M; Pauza CD; Markley JL; Volkman BF
    Biochemistry; 2001 Oct; 40(42):12486-96. PubMed ID: 11601972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disulfide bonds in rat cutaneous fatty acid-binding protein.
    Odani S; Namba Y; Ishii A; Ono T; Fujii H
    J Biochem; 2000 Sep; 128(3):355-61. PubMed ID: 10965032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type.
    Skelton NJ; Aspiras F; Ogez J; Schall TJ
    Biochemistry; 1995 Apr; 34(16):5329-42. PubMed ID: 7537088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a chicken "C" chemokine related to lymphotactin.
    Rossi D; Sanchez-García J; McCormack WT; Bazan JF; Zlotnik A
    J Leukoc Biol; 1999 Jan; 65(1):87-93. PubMed ID: 9886250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The three-dimensional structure of a helix-less variant of intestinal fatty acid-binding protein.
    Steele RA; Emmert DA; Kao J; Hodsdon ME; Frieden C; Cistola DP
    Protein Sci; 1998 Jun; 7(6):1332-9. PubMed ID: 9655337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary structure extensions in Pyrococcus furiosus ferredoxin destabilize the disulfide bond relative to that in other hyperthermostable ferredoxins. Global consequences for the disulfide orientational heterogeneity.
    Wang PL; Calzolai L; Bren KL; Teng Q; Jenney FE; Brereton PS; Howard JB; Adams MW; La Mar GN
    Biochemistry; 1999 Jun; 38(25):8167-78. PubMed ID: 10387062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structure of the human CC chemokine 2: A monomeric representative of the CC chemokine subtype.
    Sticht H; Escher SE; Schweimer K; Forssmann WG; Rösch P; Adermann K
    Biochemistry; 1999 May; 38(19):5995-6002. PubMed ID: 10320325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interconversion between two unrelated protein folds in the lymphotactin native state.
    Tuinstra RL; Peterson FC; Kutlesa S; Elgin ES; Kron MA; Volkman BF
    Proc Natl Acad Sci U S A; 2008 Apr; 105(13):5057-62. PubMed ID: 18364395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal fatty acid-binding protein: the structure and stability of a helix-less variant.
    Kim K; Cistola DP; Frieden C
    Biochemistry; 1996 Jun; 35(23):7553-8. PubMed ID: 8652535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural rearrangement of human lymphotactin, a C chemokine, under physiological solution conditions.
    Kuloğlu ES; McCaslin DR; Markley JL; Volkman BF
    J Biol Chem; 2002 May; 277(20):17863-70. PubMed ID: 11889129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR solution structure and receptor peptide binding of the CC chemokine eotaxin-2.
    Mayer KL; Stone MJ
    Biochemistry; 2000 Jul; 39(29):8382-95. PubMed ID: 10913244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The association and aggregation of the metamorphic chemokine lymphotactin with fondaparinux: from nm molecular complexes to μm molecular assemblies.
    Harvey SR; MacPhee CE; Volkman BF; Barran PE
    Chem Commun (Camb); 2016 Jan; 52(2):394-7. PubMed ID: 26523295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The putative DNA-binding protein Sto12a from the thermoacidophilic archaeon Sulfolobus tokodaii contains intrachain and interchain disulfide bonds.
    Shinkai A; Sekine S; Urushibata A; Terada T; Shirouzu M; Yokoyama S
    J Mol Biol; 2007 Oct; 372(5):1293-304. PubMed ID: 17720190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Did myocilin evolve from two different primordial proteins?
    Mukhopadhyay A; Gupta A; Mukherjee S; Chaudhuri K; Ray K
    Mol Vis; 2002 Jul; 8():271-9. PubMed ID: 12142865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the propensities of helices in PrP(C) to form beta sheet using NMR structures and sequence alignments.
    Dima RI; Thirumalai D
    Biophys J; 2002 Sep; 83(3):1268-80. PubMed ID: 12202354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lymphotactin: a cytokine that represents a new class of chemokine.
    Kelner GS; Kennedy J; Bacon KB; Kleyensteuber S; Largaespada DA; Jenkins NA; Copeland NG; Bazan JF; Moore KW; Schall TJ
    Science; 1994 Nov; 266(5189):1395-9. PubMed ID: 7973732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid sequence of a non-specific wheat phospholipid transfer protein and its conformation as revealed by infrared and Raman spectroscopy. Role of disulfide bridges and phospholipids in the stabilization of the alpha-helix structure.
    Désormeaux A; Blochet JE; Pézolet M; Marion D
    Biochim Biophys Acta; 1992 May; 1121(1-2):137-52. PubMed ID: 1599935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of lipoprotein particles containing apolipoprotein-B: structural model for the nascent lipoprotein particle.
    Richardson PE; Manchekar M; Dashti N; Jones MK; Beigneux A; Young SG; Harvey SC; Segrest JP
    Biophys J; 2005 Apr; 88(4):2789-800. PubMed ID: 15653747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.