BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11152724)

  • 1. Vagotomy decreases excitability in primary vagal afferent somata.
    Lancaster E; Oh EJ; Weinreich D
    J Neurophysiol; 2001 Jan; 85(1):247-53. PubMed ID: 11152724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium and calcium-activated currents in vagotomized rat primary vagal afferent neurons.
    Lancaster E; Oh EJ; Gover T; Weinreich D
    J Physiol; 2002 Apr; 540(Pt 2):543-56. PubMed ID: 11956342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium currents in vagotomized primary afferent neurones of the rat.
    Lancaster E; Weinreich D
    J Physiol; 2001 Oct; 536(Pt 2):445-58. PubMed ID: 11600680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical communication between vagal afferent somata in nodose Ganglia of the rat and the Guinea pig in vitro.
    Oh EJ; Weinreich D
    J Neurophysiol; 2002 Jun; 87(6):2801-7. PubMed ID: 12037182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparisons of somatic action potentials from dispersed and intact rat nodose ganglia using patch-clamp technique.
    Li BY; Schild JH
    Acta Pharmacol Sin; 2002 Jun; 23(6):481-9. PubMed ID: 12060520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity of nodose ganglion neurons after capsaicin- and vagotomy-induced nerve damage in adult rats.
    Ryu V; Gallaher Z; Czaja K
    Neuroscience; 2010 Jun; 167(4):1227-38. PubMed ID: 20197082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.
    Ricco MM; Kummer W; Biglari B; Myers AC; Undem BJ
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):521-30. PubMed ID: 8910234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanosensory transduction of vagal and baroreceptor afferents revealed by study of isolated nodose neurons in culture.
    Snitsarev V; Whiteis CA; Abboud FM; Chapleau MW
    Auton Neurosci; 2002 Jun; 98(1-2):59-63. PubMed ID: 12144042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological and pharmacological validation of vagal afferent fiber type of neurons enzymatically isolated from rat nodose ganglia.
    Li BY; Schild JH
    J Neurosci Methods; 2007 Aug; 164(1):75-85. PubMed ID: 17512602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin II increases excitability and inhibits a transient potassium current in vagal primary sensory neurons.
    Moreira TH; Cruz JS; Weinreich D
    Neuropeptides; 2009 Jun; 43(3):193-9. PubMed ID: 19433335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of extracellular calcium on excitability of guinea pig airway vagal afferent nerves.
    Undem BJ; Oh EJ; Lancaster E; Weinreich D
    J Neurophysiol; 2003 Mar; 89(3):1196-204. PubMed ID: 12626607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Withdrawal and restoration of central vagal afferents within the dorsal vagal complex following subdiaphragmatic vagotomy.
    Peters JH; Gallaher ZR; Ryu V; Czaja K
    J Comp Neurol; 2013 Oct; 521(15):3584-99. PubMed ID: 23749657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sexually dimorphic regulation of NK-1 receptor-mediated electrophysiological responses in vagal primary afferent neurons.
    Oh EJ; Thompson LP; Weinreich D
    J Neurophysiol; 2000 Jul; 84(1):51-6. PubMed ID: 10899182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nerve injury alters profile of receptor-mediated Ca2+ channel modulation in vagal afferent neurons of rat nodose ganglia.
    Huang XZ; Won YJ; Park BG; Cho BP; Lee JW; Jeong SW
    Neurosci Lett; 2004 Jul; 364(3):189-94. PubMed ID: 15196673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of passive and active electrophysiologic properties of neurons in mammalian nodose ganglia maintained in vitro.
    Jaffe RA; Sampson SR
    J Neurophysiol; 1976 Jul; 39(4):802-15. PubMed ID: 9491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized IP3-evoked Ca2+ release activates a K+ current in primary vagal sensory neurons.
    Hoesch RE; Weinreich D; Kao JP
    J Neurophysiol; 2004 May; 91(5):2344-52. PubMed ID: 14668301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K
    Sun H; Patil MJ; Ru F; Meeker S; Undem BJ
    J Physiol; 2022 Jun; 600(12):2953-2971. PubMed ID: 35430729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term regeneration of abdominal vagus: efferents fail while afferents succeed.
    Phillips RJ; Baronowsky EA; Powley TL
    J Comp Neurol; 2003 Jan; 455(2):222-37. PubMed ID: 12454987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional study of uncrossed and crossed pulmonary afferent fibres in the cervical vagus nerves of the cat.
    Daly M de B; Cook MN; Sykes RM; Spyer KM
    Auton Neurosci; 2001 Jun; 89(1-2):60-73. PubMed ID: 11474648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bradykinin decreases K(+) and increases Cl(-) conductances in vagal afferent neurones of the guinea pig.
    Oh EJ; Weinreich D
    J Physiol; 2004 Jul; 558(Pt 2):513-26. PubMed ID: 15169850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.