BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11153652)

  • 1. Fine retinotopic organization of optic terminal arbors in the tectum of normal goldfish.
    Wang Z; Meyer RL
    Vis Neurosci; 2000; 17(5):723-35. PubMed ID: 11153652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Staining of regenerated optic arbors in goldfish tectum: progressive changes in immature arbors and a comparison of mature regenerated arbors with normal arbors.
    Schmidt JT; Turcotte JC; Buzzard M; Tieman DG
    J Comp Neurol; 1988 Mar; 269(4):565-91. PubMed ID: 3372728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening.
    Schmidt JT; Buzzard M
    J Neurobiol; 1993 Mar; 24(3):384-99. PubMed ID: 7684064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole-mount study.
    Stuermer CA
    J Comp Neurol; 1984 Oct; 229(2):214-32. PubMed ID: 6501601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological recovery of axotomized goldfish retinal ganglion cells in an environment known to prevent retinotopic refinement of their regenerated tectal arbors.
    Cook JE
    Brain Res; 1990 Mar; 510(2):181-9. PubMed ID: 2331597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trajectories of regenerating retinal axons in the goldfish tectum: I. A comparison of normal and regenerated axons at late regeneration stages.
    Stuermer CA
    J Comp Neurol; 1988 Jan; 267(1):55-68. PubMed ID: 3343392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish.
    Olson MD; Meyer RL
    J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The refinement of retinotectal projection on tectal whole mount during the regeneration of the goldfish optic nerve labeled with DiI anterogradely].
    Wang ZR; Meyer RL
    Shi Yan Sheng Wu Xue Bao; 1994 Jun; 27(2):143-51. PubMed ID: 7976053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection.
    Xiong M; Pallas SL; Lim S; Finlay BL
    J Comp Neurol; 1994 Jun; 344(4):581-97. PubMed ID: 7929893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-dependent refinement in the goldfish retinotectal system is mediated by the dynamic regulation of processes withdrawal: an in vivo imaging study.
    Johnson FA; Dawson AJ; Meyer RL
    J Comp Neurol; 1999 Apr; 406(4):548-62. PubMed ID: 10205027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade.
    Hartlieb E; Stuermer CA
    J Comp Neurol; 1989 Jun; 284(1):148-68. PubMed ID: 2754029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity-driven sharpening of the regenerating retinotectal projection: effects of blocking or synchronizing activity on the morphology of individual regenerating arbors.
    Schmidt JT; Buzzard M
    J Neurobiol; 1990 Sep; 21(6):900-17. PubMed ID: 1706412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order.
    Nakamura H; O'Leary DD
    J Neurosci; 1989 Nov; 9(11):3776-95. PubMed ID: 2585055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rules of order in the retinotectal fascicles of goldfish.
    Stuermer CA; Easter SS
    J Neurosci; 1984 Apr; 4(4):1045-51. PubMed ID: 6325602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade.
    Stuermer CA; Rohrer B; Münz H
    J Neurosci; 1990 Nov; 10(11):3615-26. PubMed ID: 2230950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the stability of positional markers in the goldfish tectum.
    Busse U; Stuermer CA
    J Comp Neurol; 1989 Oct; 288(4):538-54. PubMed ID: 2808749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study.
    O'Rourke NA; Fraser SE
    Neuron; 1990 Aug; 5(2):159-71. PubMed ID: 2383399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Readjustment of retinotectal projection following reimplantation of a rotated or inverted tectal tissue in adult goldfish.
    Yoon MG
    J Physiol; 1975 Oct; 252(1):137-58. PubMed ID: 1202195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in retinal arbors in compressed projections to half tecta in goldfish.
    Schmidt J; Coen T
    J Neurobiol; 1995 Dec; 28(4):409-18. PubMed ID: 8592102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.