These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 11154257)

  • 1. The Max network gone mad.
    Baudino TA; Cleveland JL
    Mol Cell Biol; 2001 Feb; 21(3):691-702. PubMed ID: 11154257
    [No Abstract]   [Full Text] [Related]  

  • 2. The Max transcription factor network: involvement of Mad in differentiation and an approach to identification of target genes.
    Hurlin PJ; Ayer DE; Grandori C; Eisenman RN
    Cold Spring Harb Symp Quant Biol; 1994; 59():109-16. PubMed ID: 7587059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myc-Max-Mad: a transcription factor network controlling cell cycle progression, differentiation and death.
    Amati B; Land H
    Curr Opin Genet Dev; 1994 Feb; 4(1):102-8. PubMed ID: 8193530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary relationships and functional conservation among vertebrate Max-associated proteins: the zebra fish homolog of Mxi1.
    Schreiber-Agus N; Chin L; Chen K; Torres R; Thomson CT; Sacchettini JC; DePinho RA
    Oncogene; 1994 Nov; 9(11):3167-77. PubMed ID: 7936639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assignment of the human MAD and MXI1 genes to chromosomes 2p12-p13 and 10q24-q25.
    Shapiro DN; Valentine V; Eagle L; Yin X; Morris SW; Prochownik EV
    Genomics; 1994 Sep; 23(1):282-5. PubMed ID: 7829091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mmip1: a novel leucine zipper protein that reverses the suppressive effects of Mad family members on c-myc.
    Gupta K; Anand G; Yin X; Grove L; Prochownik EV
    Oncogene; 1998 Mar; 16(9):1149-59. PubMed ID: 9528857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of two genes encoding members of a distinct subfamily of MAX interacting proteins: MAD to human chromosome 2 and mouse chromosome 6, and MXI1 to human chromosome 10 and mouse chromosome 19.
    Edelhoff S; Ayer DE; Zervos AS; Steingrímsson E; Jenkins NA; Copeland NG; Eisenman RN; Brent R; Disteche CM
    Oncogene; 1994 Feb; 9(2):665-8. PubMed ID: 8290278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repression by the Mad(Mxi1)-Sin3 complex.
    Schreiber-Agus N; DePinho RA
    Bioessays; 1998 Oct; 20(10):808-18. PubMed ID: 9819568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/MAX/MAD network.
    Foley KP; Eisenman RN
    Biochim Biophys Acta; 1999 May; 1423(3):M37-47. PubMed ID: 10382539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of transcriptional repression by max homodimers.
    Yin X; Grove L; Prochownik EV
    Oncogene; 1998 May; 16(20):2629-37. PubMed ID: 9632139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rox, a novel bHLHZip protein expressed in quiescent cells that heterodimerizes with Max, binds a non-canonical E box and acts as a transcriptional repressor.
    Meroni G; Reymond A; Alcalay M; Borsani G; Tanigami A; Tonlorenzi R; Lo Nigro C; Messali S; Zollo M; Ledbetter DH; Brent R; Ballabio A; Carrozzo R
    EMBO J; 1997 May; 16(10):2892-906. PubMed ID: 9184233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function and regulation of the transcription factors of the Myc/Max/Mad network.
    Lüscher B
    Gene; 2001 Oct; 277(1-2):1-14. PubMed ID: 11602341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of Myc, but not E1a, transformation activity by Max-associated proteins, Mad and Mxi1.
    Lahoz EG; Xu L; Schreiber-Agus N; DePinho RA
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5503-7. PubMed ID: 8202517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal Structures and Nuclear Magnetic Resonance Studies of the Apo Form of the c-MYC:MAX bHLHZip Complex Reveal a Helical Basic Region in the Absence of DNA.
    Sammak S; Hamdani N; Gorrec F; Allen MD; Freund SMV; Bycroft M; Zinzalla G
    Biochemistry; 2019 Jul; 58(29):3144-3154. PubMed ID: 31260268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
    Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mad3 and Mad4: novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation.
    Hurlin PJ; Quéva C; Koskinen PJ; Steingrímsson E; Ayer DE; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1995 Nov; 14(22):5646-59. PubMed ID: 8521822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic in vivo interactions among Myc network members.
    Yin X; Landay MF; Han W; Levitan ES; Watkins SC; Levenson RM; Farkas DL; Prochownik EV
    Oncogene; 2001 Aug; 20(34):4650-64. PubMed ID: 11498788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular recognition in helix-loop-helix and helix-loop-helix-leucine zipper domains. Design of repertoires and selection of high affinity ligands for natural proteins.
    Ciarapica R; Rosati J; Cesareni G; Nasi S
    J Biol Chem; 2003 Apr; 278(14):12182-90. PubMed ID: 12514181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of cell growth by the Myc-Max-Mad network: role of Mad proteins and YY1.
    Austen M; Cerni C; Henriksson M; Hilfenhaus S; Lüscher-Firzlaff JM; Menkel A; Seelos C; Sommer A; Lüscher B
    Curr Top Microbiol Immunol; 1997; 224():123-30. PubMed ID: 9308235
    [No Abstract]   [Full Text] [Related]  

  • 20. Use of a two-hybrid system to identify mutations in Max that confer increased affinity for Myc.
    Wang H; Van Den Bergh F; Spencer E; Wilcox K; Herman T
    DNA Cell Biol; 1997 Nov; 16(11):1277-88. PubMed ID: 9407000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.