BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 11154694)

  • 1. Saccharomyces cerevisiae is capable of de Novo pantothenic acid biosynthesis involving a novel pathway of beta-alanine production from spermine.
    White WH; Gunyuzlu PL; Toyn JH
    J Biol Chem; 2001 Apr; 276(14):10794-800. PubMed ID: 11154694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for beta-alanine biosynthesis in Saccharomyces cerevisiae.
    White WH; Skatrud PL; Xue Z; Toyn JH
    Genetics; 2003 Jan; 163(1):69-77. PubMed ID: 12586697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase.
    Chattopadhyay MK; Tabor CW; Tabor H
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13869-74. PubMed ID: 14617780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structures of Fms1 and its complex with spermine reveal substrate specificity.
    Huang Q; Liu Q; Hao Q
    J Mol Biol; 2005 May; 348(4):951-9. PubMed ID: 15843025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast Fms1 is a FAD-utilizing polyamine oxidase.
    Landry J; Sternglanz R
    Biochem Biophys Res Commun; 2003 Apr; 303(3):771-6. PubMed ID: 12670477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the regioselectivity and stereospecificity of FAD-dependent polyamine oxidases with the use of amine-attached guide molecules as conformational modulators.
    Keinänen TA; Grigorenko N; Khomutov AR; Huang Q; Uimari A; Alhonen L; Hyvönen MT; Vepsäläinen J
    Biosci Rep; 2018 Aug; 38(4):. PubMed ID: 30006473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevation of cellular Mg
    Hanner AS; Dunworth M; Casero RA; MacDiarmid CW; Park MH
    J Biol Chem; 2019 Nov; 294(45):17131-17142. PubMed ID: 31548311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic and structural analyses of the roles of active site residues in yeast polyamine oxidase Fms1: characterization of the N195A and D94N enzymes.
    Adachi MS; Taylor AB; Hart PJ; Fitzpatrick PF
    Biochemistry; 2012 Oct; 51(43):8690-7. PubMed ID: 23034052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of the main beta-alanine uptake system in Escherichia coli.
    Schneider F; Krämer R; Burkovski A
    Appl Microbiol Biotechnol; 2004 Oct; 65(5):576-82. PubMed ID: 15221223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylthioadenosine and polyamine biosynthesis in a Saccharomyces cerevisiae meu1delta mutant.
    Chattopadhyay MK; Tabor CW; Tabor H
    Biochem Biophys Res Commun; 2006 Apr; 343(1):203-7. PubMed ID: 16530730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of spermine and spermidine effects on Saccharomyces cerevisiae. Polyamine production in different growth conditions and in the presence of interleukin-2.
    Del Carratore R; Bronzetti G; Valenti D
    J Environ Pathol Toxicol Oncol; 1993; 12(3):143-7. PubMed ID: 8189367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing mammalian spermine oxidase enzyme-substrate complex through molecular modeling, site-directed mutagenesis and biochemical characterization.
    Tavladoraki P; Cervelli M; Antonangeli F; Minervini G; Stano P; Federico R; Mariottini P; Polticelli F
    Amino Acids; 2011 Apr; 40(4):1115-26. PubMed ID: 20839014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of coenzyme A biosynthesis.
    Jackowski S; Rock CO
    J Bacteriol; 1981 Dec; 148(3):926-32. PubMed ID: 6796563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Engineering of
    Guo J; Sun X; Yuan Y; Chen Q; Ou Z; Deng Z; Ma T; Liu T
    J Agric Food Chem; 2023 May; 71(19):7408-7417. PubMed ID: 37154424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via β-alanine.
    Borodina I; Kildegaard KR; Jensen NB; Blicher TH; Maury J; Sherstyk S; Schneider K; Lamosa P; Herrgård MJ; Rosenstand I; Öberg F; Forster J; Nielsen J
    Metab Eng; 2015 Jan; 27():57-64. PubMed ID: 25447643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae.
    Tabor CW; Tabor H; Tyagi AK; Cohn MS
    Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening for modulators of spermine tolerance identifies Sky1, the SR protein kinase of Saccharomyces cerevisiae, as a regulator of polyamine transport and ion homeostasis.
    Erez O; Kahana C
    Mol Cell Biol; 2001 Jan; 21(1):175-84. PubMed ID: 11113192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive metabolic profiling of Geotrichum candidum and comparison with Saccharomyces cerevisiae.
    Bamba T; Hori Y; Umebayashi K; Soh C; Hakozaki T; Toyama K; Osumi M; Kondo A; Hasunuma T
    J Biosci Bioeng; 2024 Jan; 137(1):9-15. PubMed ID: 37968228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1.
    Adachi MS; Taylor AB; Hart PJ; Fitzpatrick PF
    Biochemistry; 2012 Jun; 51(24):4888-97. PubMed ID: 22642831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The yeast pantothenate kinase Cab1 is a master regulator of sterol metabolism and of susceptibility to ergosterol biosynthesis inhibitors.
    Chiu JE; Thekkiniath J; Mehta S; Müller C; Bracher F; Ben Mamoun C
    J Biol Chem; 2019 Oct; 294(40):14757-14767. PubMed ID: 31409644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.