These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 11154701)
1. Clockwise domain arrangement of the sodium channel revealed by (mu)-conotoxin (GIIIA) docking orientation. Li RA; Ennis IL; French RJ; Dudley SC; Tomaselli GF; Marbán E J Biol Chem; 2001 Apr; 276(14):11072-7. PubMed ID: 11154701 [TBL] [Abstract][Full Text] [Related]
2. mu-conotoxin GIIIA interactions with the voltage-gated Na(+) channel predict a clockwise arrangement of the domains. Dudley SC; Chang N; Hall J; Lipkind G; Fozzard HA; French RJ J Gen Physiol; 2000 Nov; 116(5):679-90. PubMed ID: 11055996 [TBL] [Abstract][Full Text] [Related]
3. Characterizing the mu-conotoxin binding site on voltage-sensitive sodium channels with toxin analogs and channel mutations. Chahine M; Chen LQ; Fotouhi N; Walsky R; Fry D; Santarelli V; Horn R; Kallen RG Recept Channels; 1995; 3(3):161-74. PubMed ID: 8821790 [TBL] [Abstract][Full Text] [Related]
4. Charge conversion enables quantification of the proximity between a normally-neutral mu-conotoxin (GIIIA) site and the Na+ channel pore. Li RA; Sato K; Kodama K; Kohno T; Xue T; Tomaselli GF; Marbán E FEBS Lett; 2002 Jan; 511(1-3):159-64. PubMed ID: 11821068 [TBL] [Abstract][Full Text] [Related]
5. Dependence of mu-conotoxin block of sodium channels on ionic strength but not on the permeating [Na+]: implications for the distinctive mechanistic interactions between Na+ and K+ channel pore-blocking toxins and their molecular targets. Li RA; Hui K; French RJ; Sato K; Henrikson CA; Tomaselli GF; Marbán E J Biol Chem; 2003 Aug; 278(33):30912-9. PubMed ID: 12764145 [TBL] [Abstract][Full Text] [Related]
6. Novel structural determinants of mu-conotoxin (GIIIB) block in rat skeletal muscle (mu1) Na+ channels. Li RA; Ennis IL; Vélez P; Tomaselli GF; Marbán E J Biol Chem; 2000 Sep; 275(36):27551-8. PubMed ID: 10859326 [TBL] [Abstract][Full Text] [Related]
8. A mu-conotoxin-insensitive Na+ channel mutant: possible localization of a binding site at the outer vestibule. Dudley SC; Todt H; Lipkind G; Fozzard HA Biophys J; 1995 Nov; 69(5):1657-65. PubMed ID: 8580309 [TBL] [Abstract][Full Text] [Related]
9. muO conotoxins inhibit NaV channels by interfering with their voltage sensors in domain-2. Leipold E; DeBie H; Zorn S; Borges A; Olivera BM; Terlau H; Heinemann SH Channels (Austin); 2007; 1(4):253-62. PubMed ID: 18698149 [TBL] [Abstract][Full Text] [Related]
10. Predominant interactions between mu-conotoxin Arg-13 and the skeletal muscle Na+ channel localized by mutant cycle analysis. Chang NS; French RJ; Lipkind GM; Fozzard HA; Dudley S Biochemistry; 1998 Mar; 37(13):4407-19. PubMed ID: 9521760 [TBL] [Abstract][Full Text] [Related]
11. Latent specificity of molecular recognition in sodium channels engineered to discriminate between two "indistinguishable" mu-conotoxins. Li RA; Ennis IL; Tomaselli GF; French RJ; Marbán E Biochemistry; 2001 May; 40(20):6002-8. PubMed ID: 11352735 [TBL] [Abstract][Full Text] [Related]
12. Novel interactions identified between micro -Conotoxin and the Na+ channel domain I P-loop: implications for toxin-pore binding geometry. Xue T; Ennis IL; Sato K; French RJ; Li RA Biophys J; 2003 Oct; 85(4):2299-310. PubMed ID: 14507694 [TBL] [Abstract][Full Text] [Related]
13. Docking of mu-conotoxin GIIIA in the sodium channel outer vestibule. Choudhary G; Aliste MP; Tieleman DP; French RJ; Dudley SC Channels (Austin); 2007; 1(5):344-52. PubMed ID: 18690041 [TBL] [Abstract][Full Text] [Related]
14. Extrapore residues of the S5-S6 loop of domain 2 of the voltage-gated skeletal muscle sodium channel (rSkM1) contribute to the mu-conotoxin GIIIA binding site. Chahine M; Sirois J; Marcotte P; Chen L; Kallen RG Biophys J; 1998 Jul; 75(1):236-46. PubMed ID: 9649383 [TBL] [Abstract][Full Text] [Related]
15. Action of derivatives of mu-conotoxin GIIIA on sodium channels. Single amino acid substitutions in the toxin separately affect association and dissociation rates. Becker S; Prusak-Sochaczewski E; Zamponi G; Beck-Sickinger AG; Gordon RD; French RJ Biochemistry; 1992 Sep; 31(35):8229-38. PubMed ID: 1326324 [TBL] [Abstract][Full Text] [Related]
16. Multiple, distributed interactions of μ-conotoxin PIIIA associated with broad targeting among voltage-gated sodium channels. McArthur JR; Ostroumov V; Al-Sabi A; McMaster D; French RJ Biochemistry; 2011 Jan; 50(1):116-24. PubMed ID: 21110521 [TBL] [Abstract][Full Text] [Related]
17. Folding similarity of the outer pore region in prokaryotic and eukaryotic sodium channels revealed by docking of conotoxins GIIIA, PIIIA, and KIIIA in a NavAb-based model of Nav1.4. Korkosh VS; Zhorov BS; Tikhonov DB J Gen Physiol; 2014 Sep; 144(3):231-44. PubMed ID: 25156117 [TBL] [Abstract][Full Text] [Related]
18. The muO-conotoxin MrVIA inhibits voltage-gated sodium channels by associating with domain-3. Zorn S; Leipold E; Hansel A; Bulaj G; Olivera BM; Terlau H; Heinemann SH FEBS Lett; 2006 Feb; 580(5):1360-4. PubMed ID: 16458302 [TBL] [Abstract][Full Text] [Related]
19. Solution structure of the sodium channel antagonist conotoxin GS: a new molecular caliper for probing sodium channel geometry. Hill JM; Alewood PF; Craik DJ Structure; 1997 Apr; 5(4):571-83. PubMed ID: 9115446 [TBL] [Abstract][Full Text] [Related]
20. Molecular basis of isoform-specific micro-conotoxin block of cardiac, skeletal muscle, and brain Na+ channels. Li RA; Ennis IL; Xue T; Nguyen HM; Tomaselli GF; Goldin AL; Marbán E J Biol Chem; 2003 Mar; 278(10):8717-24. PubMed ID: 12471026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]