These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 11154851)
1. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development. Ramírez O; Jiménez E Int J Dev Neurosci; 2000 Dec; 18(8):815-23. PubMed ID: 11154851 [TBL] [Abstract][Full Text] [Related]
2. Sexual dimorphism in rat cerebrum and cerebellum: different patterns of catalytically active creatine kinase isoenzymes during postnatal development and aging. Ramírez O; Jiménez E Int J Dev Neurosci; 2002 Dec; 20(8):627-39. PubMed ID: 12526893 [TBL] [Abstract][Full Text] [Related]
3. Presence of (phospho)creatine in developing and adult skeletal muscle of mice without mitochondrial and cytosolic muscle creatine kinase isoforms. in 't Zandt HJ; de Groof AJ; Renema WK; Oerlemans FT; Klomp DW; Wieringa B; Heerschap A J Physiol; 2003 May; 548(Pt 3):847-58. PubMed ID: 12640020 [TBL] [Abstract][Full Text] [Related]
4. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Tachikawa M; Fukaya M; Terasaki T; Ohtsuki S; Watanabe M Eur J Neurosci; 2004 Jul; 20(1):144-60. PubMed ID: 15245487 [TBL] [Abstract][Full Text] [Related]
5. Electrophoretic fractionation of creatine kinase isoenzymes and macroenzymes in clinically healthy dogs and cats and preliminary evaluation in central neurologic disease. Paltrinieri S; Cazzaniga S; da Cunha NP; Giordano A Vet Clin Pathol; 2010 Sep; 39(3):329-36. PubMed ID: 20698943 [TBL] [Abstract][Full Text] [Related]
6. Sex differences in rat heart. Different patterns of catalytically active creatine kinase isoenzymes. Ramírez OC; Jiménez E Arch Inst Cardiol Mex; 2000; 70(5):438-47. PubMed ID: 11534094 [TBL] [Abstract][Full Text] [Related]
7. Functional maturation of creatine kinase in rat brain. Holtzman D; Tsuji M; Wallimann T; Hemmer W Dev Neurosci; 1993; 15(3-5):261-70. PubMed ID: 7805578 [TBL] [Abstract][Full Text] [Related]
8. Functional aspects of creatine kinase in brain. Hemmer W; Wallimann T Dev Neurosci; 1993; 15(3-5):249-60. PubMed ID: 7805577 [TBL] [Abstract][Full Text] [Related]
9. Creatine kinase isoenzyme patterns upon chronic exposure to cigarette smoke: protective effect of Bacoside A. Anbarasi K; Vani G; Balakrishna K; Devi CS Vascul Pharmacol; 2005 Jan; 42(2):57-61. PubMed ID: 15722250 [TBL] [Abstract][Full Text] [Related]
10. Creatine kinase B-driven energy transfer in the brain is important for habituation and spatial learning behaviour, mossy fibre field size and determination of seizure susceptibility. Jost CR; Van Der Zee CE; In 't Zandt HJ; Oerlemans F; Verheij M; Streijger F; Fransen J; Heerschap A; Cools AR; Wieringa B Eur J Neurosci; 2002 May; 15(10):1692-706. PubMed ID: 12059977 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of brain-type creatine kinase at 1.41 A resolution. Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529 [TBL] [Abstract][Full Text] [Related]
12. Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells. Wegmann G; Huber R; Zanolla E; Eppenberger HM; Wallimann T Differentiation; 1991 Mar; 46(2):77-87. PubMed ID: 2065867 [TBL] [Abstract][Full Text] [Related]
13. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites. Schlattner U; Klaus A; Ramirez Rios S; Guzun R; Kay L; Tokarska-Schlattner M Amino Acids; 2016 Aug; 48(8):1751-74. PubMed ID: 27318991 [TBL] [Abstract][Full Text] [Related]
14. High content of creatine kinase in chicken retina: compartmentalized localization of creatine kinase isoenzymes in photoreceptor cells. Wallimann T; Wegmann G; Moser H; Huber R; Eppenberger HM Proc Natl Acad Sci U S A; 1986 Jun; 83(11):3816-9. PubMed ID: 3520556 [TBL] [Abstract][Full Text] [Related]
15. Studies on the stability of creatine kinase isozymes. Guo Z; Wang Z; Wang X Biochem Cell Biol; 2003 Feb; 81(1):9-16. PubMed ID: 12683631 [TBL] [Abstract][Full Text] [Related]
16. 'Hot spots' of creatine kinase localization in brain: cerebellum, hippocampus and choroid plexus. Kaldis P; Hemmer W; Zanolla E; Holtzman D; Wallimann T Dev Neurosci; 1996; 18(5-6):542-54. PubMed ID: 8940630 [TBL] [Abstract][Full Text] [Related]
17. Production of recombinant human creatine kinase (r-hCK) isozymes by tandem repeat expression of M and B genes and characterization of r-hCK-MB. Sunahara Y; Uchida K; Tanaka T; Matsukawa H; Inagaki M; Matuo Y Clin Chem; 2001 Mar; 47(3):471-6. PubMed ID: 11238299 [TBL] [Abstract][Full Text] [Related]
18. Compartmentation of brain-type creatine kinase and ubiquitous mitochondrial creatine kinase in neurons: evidence for a creatine phosphate energy shuttle in adult rat brain. Friedman DL; Roberts R J Comp Neurol; 1994 May; 343(3):500-11. PubMed ID: 7517967 [TBL] [Abstract][Full Text] [Related]
19. Carbofuran-induced alterations (in vivo) in high-energy phosphates, creatine kinase (CK) and CK isoenzymes. Gupta RC; Goad JT; Kadel WL Arch Toxicol; 1991; 65(4):304-10. PubMed ID: 1953349 [TBL] [Abstract][Full Text] [Related]
20. Phosphoglycerate mutase, 2,3-bisphosphoglycerate phosphatase and creatine kinase activity and isoenzymes in human brain tumours. Durany N; Joseph J; Cruz-Sánchez FF; Carreras J Br J Cancer; 1997; 76(9):1139-49. PubMed ID: 9365161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]