These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 11154899)

  • 1. Calculation of the dimensions of dosage forms with release controlled by diffusion for in vivo use.
    Ainaoui A; Siepmann J; Bodmeier R; Vergnaud JM
    Eur J Pharm Biopharm; 2001 Jan; 51(1):17-24. PubMed ID: 11154899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-controlled drug delivery systems: calculation of the required composition to achieve desired release profiles.
    Siepmann J; Lecomte F; Bodmeier R
    J Control Release; 1999 Aug; 60(2-3):379-89. PubMed ID: 10425342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of the dimensions of drug-polymer devices based on diffusion parameters.
    Siepmann J; Ainaoui A; Vergnaud JM; Bodmeier R
    J Pharm Sci; 1998 Jul; 87(7):827-32. PubMed ID: 9649350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioavailability and in vivo release behavior of controlled-release multiple-unit theophylline dosage forms in beagle dogs, cynomolgus monkeys, and göttingen minipigs.
    Ikegami K; Tagawa K; Osawa T
    J Pharm Sci; 2006 Sep; 95(9):1888-95. PubMed ID: 16850398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled-release hydrophilic tablets for individualized theophylline therapy.
    Sabnis S; Adeyeye CM
    Drug Dev Ind Pharm; 1999 Feb; 25(2):187-96. PubMed ID: 10065352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eudraginated polymer blends: a potential oral controlled drug delivery system for theophylline.
    Emeje M; John-Africa L; Isimi Y; Kunle O; Ofoefule S
    Acta Pharm; 2012 Mar; 62(1):71-82. PubMed ID: 22472450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical models for calculating the blood level of a drug with oral controlled release forms.
    Vergnaud JM
    Medinfo; 1995; 8 Pt 2():1127-31. PubMed ID: 8591386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacokinetics of caffeine in the oestrogen-implanted ovariectomized ewe.
    Pollard I; Williamson S; Downing J; Scaramuzzi R
    J Vet Pharmacol Ther; 1996 Apr; 19(2):113-7. PubMed ID: 8735418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multi-mechanistic drug release approach in a bead dosage form and in vivo predictions.
    Liu Y; Schwartz JB; Schnaare RL; Sugita ET
    Pharm Dev Technol; 2003; 8(4):419-30. PubMed ID: 14601966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism.
    Norell MC; Andersson HS; Nicholls IA
    J Mol Recognit; 1998; 11(1-6):98-102. PubMed ID: 10076816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The confirmation and control of metabolic caffeine in standardbred horses after administration of theophylline.
    Todi F; Mendonca M; Ryan M; Herskovits P
    J Vet Pharmacol Ther; 1999 Oct; 22(5):333-42. PubMed ID: 10597538
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo sustained-release characteristics of theophylline matrix tablets and novel cluster tablets.
    Hayashi T; Kanbe H; Okada M; Kawase I; Ikeda Y; Onuki Y; Kaneko T; Sonobe T
    Int J Pharm; 2007 Aug; 341(1-2):105-13. PubMed ID: 17512147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of caffeine on the steady-state pharmacokinetics of theophylline.
    Jonkman JH; Sollie FA; Sauter R; Steinijans VW
    Clin Pharmacol Ther; 1991 Mar; 49(3):248-55. PubMed ID: 2007319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey: calculation of the characteristics of oral diffusion-controlled release dosage forms related to the drug.
    Rosca ID; Vergnaud JM
    Eur J Drug Metab Pharmacokinet; 2010 Sep; 35(1-2):29-39. PubMed ID: 21495264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theophylline controlled-release formulations: in vivo-in vitro correlations.
    Yu Z; Schwartz JB; Sugita ET
    Biopharm Drug Dispos; 1996 Apr; 17(3):259-72. PubMed ID: 8983400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of blood level with controlled-release dosage forms: effect of the rate constant of elimination of the drug.
    Aïnaoui A; Vergnaud JM
    Eur J Drug Metab Pharmacokinet; 1998; 23(3):383-9. PubMed ID: 9842981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transdermal and buccal delivery of methylxanthines through human tissue in vitro.
    Thakur RA; Michniak BB; Meidan VM
    Drug Dev Ind Pharm; 2007 May; 33(5):513-21. PubMed ID: 17520442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic PMMA-grafted polysaccharides as hydrophilic matrix for controlled-release forms.
    Castellano I; Goñi I; Ferrero MC; Muñoz A; Jiménez-Castellanos R; Gurruchaga M
    Drug Dev Ind Pharm; 1999 Dec; 25(12):1249-57. PubMed ID: 10612020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of rutaecarpine on the metabolism and urinary excretion of caffeine in rats.
    Noh K; Seo YM; Lee SK; Bista SR; Kang MJ; Jahng Y; Kim E; Kang W; Jeong TC
    Arch Pharm Res; 2011 Jan; 34(1):119-25. PubMed ID: 21468923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the bioavailability and pharmacokinetics of two extended-release theophylline formulations in dogs.
    Bach JE; Kukanich B; Papich MG; McKiernan BC
    J Am Vet Med Assoc; 2004 Apr; 224(7):1113-9. PubMed ID: 15074856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.