BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 11155059)

  • 1. Telemetric assessment of intracranial pressure changes consequent to manipulations of the Codman-Medos programmable shunt valve.
    Frim DM; Lathrop D
    Pediatr Neurosurg; 2000 Nov; 33(5):237-242. PubMed ID: 11155059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new ventriculoperitoneal shunt with a telemetric intracranial pressure sensor: clinical experience in 94 patients with hydrocephalus.
    Miyake H; Ohta T; Kajimoto Y; Matsukawa M
    Neurosurgery; 1997 May; 40(5):931-5. PubMed ID: 9149250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial Pressure-Guided Shunt Valve Adjustments with the Miethke Sensor Reservoir.
    Antes S; Stadie A; Müller S; Linsler S; Breuskin D; Oertel J
    World Neurosurg; 2018 Jan; 109():e642-e650. PubMed ID: 29054776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraventricular pressure dynamics in patients with ventriculopleural shunts: a telemetric study.
    Munshi I; Lathrop D; Madsen JR; Frim DM
    Pediatr Neurosurg; 1998 Feb; 28(2):67-9. PubMed ID: 9693334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo intracranial pressure dynamics in patients with hydrocephalus treated by shunt placement.
    Frim DM; Goumnerova LC
    J Neurosurg; 2000 Jun; 92(6):927-32. PubMed ID: 10839251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The programmable adult Codman Hakim valve is useful even in very small children with hydrocephalus. A 7-year retrospective study with special focus on cost/benefit analysis.
    Arnell K; Eriksson E; Olsen L
    Eur J Pediatr Surg; 2006 Feb; 16(1):1-7. PubMed ID: 16544218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of the Codman-Medos Programmable Hakim valve in the management of patients with hydrocephalus: illustrative cases.
    Black PM; Hakim R; Bailey NO
    Neurosurgery; 1994 Jun; 34(6):1110-3. PubMed ID: 8084404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CSF dynamics in a patient with a programmable shunt.
    Tsuji O; Sato K
    Acta Neurochir Suppl; 1998; 71():364-7. PubMed ID: 9779231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Test-Retest Reliability of Outpatient Telemetric Intracranial Pressure Measurements in Shunt-Dependent Patients with Hydrocephalus and Idiopathic Intracranial Hypertension.
    Müller SJ; Freimann FB; von der Brelie C; Rohde V; Schatlo B
    World Neurosurg; 2019 Nov; 131():e74-e80. PubMed ID: 31295619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A randomized, controlled study of a programmable shunt valve versus a conventional valve for patients with hydrocephalus. Hakim-Medos Investigator Group.
    Pollack IF; Albright AL; Adelson PD
    Neurosurgery; 1999 Dec; 45(6):1399-408; discussion 1408-11. PubMed ID: 10598708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The programmable shunt-system Codman Medos Hakim: A clinical observation study and review of literature.
    Nowak S; Mehdorn HM; Stark A
    Clin Neurol Neurosurg; 2018 Oct; 173():154-158. PubMed ID: 30142621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus.
    Reinprecht A; Dietrich W; Bertalanffy A; Czech T
    Childs Nerv Syst; 1997; 13(11-12):588-93; discussion 593-4. PubMed ID: 9454974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Withdrawal of shunt systems--clinical use of the programmable shunt system and its effect on hydrocephalus in children.
    Takahashi Y
    Childs Nerv Syst; 2001 Aug; 17(8):472-7. PubMed ID: 11508536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracranial pressure in hydrocephalus: impact of shunt adjustments and body positions.
    Farahmand D; Qvarlander S; Malm J; Wikkelsö C; Eklund A; Tisell M
    J Neurol Neurosurg Psychiatry; 2015 Feb; 86(2):222-8. PubMed ID: 24963125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalence and indication for changing the primary valve opening pressure in ventriculoperitoneal shunts - A single center five years overview.
    Müggenburg L; Behmanesh B; Dinc N; Marquardt G; Seifert V; Quick-Weller J
    Clin Neurol Neurosurg; 2019 Nov; 186():105523. PubMed ID: 31525716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical experience with telemetric intracranial pressure monitoring in a Danish neurosurgical center.
    Lilja A; Andresen M; Hadi A; Christoffersen D; Juhler M
    Clin Neurol Neurosurg; 2014 May; 120():36-40. PubMed ID: 24731573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The Codman Medos programmable shunt valve. Evaluation of 53 implantations in 50 patients].
    Belliard H; Roux FX; Turak B; Nataf F; Devaux B; Cioloca C
    Neurochirurgie; 1996; 42(3):139-45; discussion 145-6. PubMed ID: 9084740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seven years of clinical experience with the programmable Codman Hakim valve: a retrospective study of 583 patients.
    Zemack G; Romner B
    J Neurosurg; 2000 Jun; 92(6):941-8. PubMed ID: 10839253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.