These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 1115563)

  • 1. Molybdenum and iron as functional consitituents of the enzymes of the nitrate-reducing system of Azotobacter chroococcum.
    Guerrero MG; Vega JM
    Arch Microbiol; 1975; 102(2):91-4. PubMed ID: 1115563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced nicotinamide-adenine dinucleotide-nitrite reductase from Azotobacter chroococcum.
    Vega JM; Guerrero MG; Leadbetter E; Losada M
    Biochem J; 1973 Aug; 133(4):701-8. PubMed ID: 4147887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of a soluble nitrate reductase from Azotobacter chroococcum.
    Guerrero MG; Vega JM; Leadbetter E; Losada M
    Arch Mikrobiol; 1973 Jun; 91(4):287-304. PubMed ID: 4741525
    [No Abstract]   [Full Text] [Related]  

  • 4. A heme-C-containing enzyme complex that exhibits nitrate and nitrite reductase activity from the dissimilatory iron-reducing bacterium Geobacter metallireducens.
    Martínez Murillo F; Gugliuzza T; Senko J; Basu P; Stolz JF
    Arch Microbiol; 1999 Nov; 172(5):313-20. PubMed ID: 10550473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial expression of the molybdenum domain of assimilatory nitrate reductase: production of both the functional molybdenum-containing domain and the nonfunctional tungsten analog.
    Pollock VV; Conover RC; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Jul; 403(2):237-48. PubMed ID: 12139973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of reduced pyridine nucleotides and tungstate on the in vitro insertion of molybdenum into demolybdo-nitrate reductase of Chlorella vulgaris.
    Shen TC; Ramadoss CS; Vennesland B
    Biochim Biophys Acta; 1982 Jun; 704(2):227-34. PubMed ID: 7201857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii.
    Gangeswaran R; Lowe DJ; Eady RR
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):335-42. PubMed ID: 8380991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of tungsten and vanadium on the in vitro assembly of assimilatory nitrate reductase utilizing Neurospora mutant nit-1.
    Lee KY; Erickson R; Pan SS; Jones G; May F; Nason A
    J Biol Chem; 1974 Jun; 249(12):3953-9. PubMed ID: 4151950
    [No Abstract]   [Full Text] [Related]  

  • 9. chlD gene function in molybdate activation of nitrate reductase.
    Sperl GT; DeMoss JA
    J Bacteriol; 1975 Jun; 122(3):1230-8. PubMed ID: 1097396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii.
    Mouncey NJ; Mitchenall LA; Pau RN
    J Bacteriol; 1995 Sep; 177(18):5294-302. PubMed ID: 7665518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media.
    Gates AJ; Hughes RO; Sharp SR; Millington PD; Nilavongse A; Cole JA; Leach ER; Jepson B; Richardson DJ; Butler CS
    FEMS Microbiol Lett; 2003 Mar; 220(2):261-9. PubMed ID: 12670690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of the formate-nitrate electron transport pathway from inactive components in Escherichia coli.
    Scott RH; DeMoss JA
    J Bacteriol; 1976 Apr; 126(1):478-86. PubMed ID: 770433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation in vitro of respiratory nitrate reductase of Escherichia coli K12 grown in the presence of tungstate. Involvement of molybdenum cofactor.
    Saracino L; Violet M; Boxer DH; Giordano G
    Eur J Biochem; 1986 Aug; 158(3):483-90. PubMed ID: 3525161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of nit-1 nitrate reductase by W-formate dehydrogenase.
    Deaton JC; Solomon EI; Durfor CN; Wetherbee PJ; Burgess BK; Jacobs DB
    Biochem Biophys Res Commun; 1984 Jun; 121(3):1042-7. PubMed ID: 6234890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro incorporation of molybdate into demolybdoproteins in Escherichia coli.
    Scott RH; Sperl GT; DeMoss JA
    J Bacteriol; 1979 Feb; 137(2):719-26. PubMed ID: 370097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on nitrate reductase of Clostridium perfringens. Purification, some properties, and effect of tungstate on its formation.
    Seki-Chiba S; Ishimoto M
    J Biochem; 1977 Dec; 82(6):1663-71. PubMed ID: 202590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrite and nitrate reduction by molybdenum centers of the nitrate reductase type: computational predictions on the catalytic mechanism.
    Silaghi-Dumitrescu R; Mich M; Matyas C; Cooper CE
    Nitric Oxide; 2012 Jan; 26(1):27-31. PubMed ID: 22138423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrate assimilation by bacteria.
    Lin JT; Stewart V
    Adv Microb Physiol; 1998; 39():1-30, 379. PubMed ID: 9328645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an operon involved in the assimilatory nitrate-reducing system of Azotobacter vinelandii.
    Ramos F; Blanco G; Gutiérrez JC; Luque F; Tortolero M
    Mol Microbiol; 1993 Jun; 8(6):1145-53. PubMed ID: 8361359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of molybdenum and iron in the in vitro assembly of assimilatory nitrate reductase utilizing Neurospora mutant nit-1.
    Lee KY; Pan SS; Erickson R; Nason A
    J Biol Chem; 1974 Jun; 249(12):3941-52. PubMed ID: 4151814
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.