These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 11156193)

  • 1. Rule extraction by successive regularization.
    Ishikawa M
    Neural Netw; 2000 Dec; 13(10):1171-83. PubMed ID: 11156193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greedy rule generation from discrete data and its use in neural network rule extraction.
    Odajima K; Hayashi Y; Tianxia G; Setiono R
    Neural Netw; 2008 Sep; 21(7):1020-8. PubMed ID: 18442894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison between two neural network rule extraction techniques for the diagnosis of hepatobiliary disorders.
    Hayashi Y; Setiono R; Yoshida K
    Artif Intell Med; 2000 Nov; 20(3):205-16. PubMed ID: 10998587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach.
    Etchells TA; Lisboa PJ
    IEEE Trans Neural Netw; 2006 Mar; 17(2):374-84. PubMed ID: 16566465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rule extraction from minimal neural networks for credit card screening.
    Setiono R; Baesens B; Mues C
    Int J Neural Syst; 2011 Aug; 21(4):265-76. PubMed ID: 21809474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piecewise-linear neural networks and their relationship to rule extraction from data.
    Holena M
    Neural Comput; 2006 Nov; 18(11):2813-53. PubMed ID: 16999580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyper-heuristic Evolution of Dispatching Rules: A Comparison of Rule Representations.
    Branke J; Hildebrandt T; Scholz-Reiter B
    Evol Comput; 2015; 23(2):249-77. PubMed ID: 24885679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guiding hidden layer representations for improved rule extraction from neural networks.
    Huynh TQ; Reggia JA
    IEEE Trans Neural Netw; 2011 Feb; 22(2):264-75. PubMed ID: 21138801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A learning rule for very simple universal approximators consisting of a single layer of perceptrons.
    Auer P; Burgsteiner H; Maass W
    Neural Netw; 2008 Jun; 21(5):786-95. PubMed ID: 18249524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new data mining scheme using artificial neural networks.
    Kamruzzaman SM; Jehad Sarkar AM
    Sensors (Basel); 2011; 11(5):4622-47. PubMed ID: 22163866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Rule induction algorithm for brain glioma using support vector machine].
    Li G; Yang J; Wang J; Geng D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):410-2. PubMed ID: 16706378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating rules with predicates, terms and variables from the pruned neural networks.
    Nayak R
    Neural Netw; 2009 May; 22(4):405-14. PubMed ID: 19269778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for automated temporal knowledge acquisition applied to sleep-related breathing disorders.
    Guimarães G; Peter JH; Penzel T; Ultsch A
    Artif Intell Med; 2001 Nov; 23(3):211-37. PubMed ID: 11704438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural network explanation using inversion.
    Saad EW; Wunsch DC
    Neural Netw; 2007 Jan; 20(1):78-93. PubMed ID: 17029713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracting rules from neural networks as decision diagrams.
    Chorowski J; Zurada JM
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2435-46. PubMed ID: 21335310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recognition of partially occluded and rotated images with a network of spiking neurons.
    Shin JH; Smith D; Swiercz W; Staley K; Rickard JT; Montero J; Kurgan LA; Cios KJ
    IEEE Trans Neural Netw; 2010 Nov; 21(11):1697-709. PubMed ID: 21047704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity-based adaptive learning rules for binary feedforward neural networks.
    Zhong S; Zeng X; Wu S; Han L
    IEEE Trans Neural Netw Learn Syst; 2012 Mar; 23(3):480-91. PubMed ID: 24808553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training hard-margin support vector machines using greedy stagewise algorithm.
    Bo L; Wang L; Jiao L
    IEEE Trans Neural Netw; 2008 Aug; 19(8):1446-55. PubMed ID: 18701373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The extraction of information and knowledge from trained neural networks.
    Livingstone DJ; Browne A; Crichton R; Hudson BD; Whitley DC; Ford MG
    Methods Mol Biol; 2008; 458():231-48. PubMed ID: 19065813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach to the extraction of ANN rules and to their generalization capacity through GP.
    Rabuñal JR; Dorado J; Pazos A; Pereira J; Rivero D
    Neural Comput; 2004 Jul; 16(7):1483-523. PubMed ID: 15165398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.