These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 11156308)

  • 1. Evidence for interactive locomotor and oculomotor deficits in cerebellar patients during visually guided stepping.
    Crowdy KA; Hollands MA; Ferguson IT; Marple-Horvat DE
    Exp Brain Res; 2000 Dec; 135(4):437-54. PubMed ID: 11156308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct visualisation of gaze and hypometric saccades in cerebellar patients during visually guided stepping.
    Marple-Horvat DE; Crowdy KA
    Gait Posture; 2005 Jan; 21(1):39-47. PubMed ID: 15536032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alcohol affects eye movements essential for visually guided stepping.
    Crowdy KA; Marple-Horvat DE
    Alcohol Clin Exp Res; 2004 Mar; 28(3):402-7. PubMed ID: 15084897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rehearsal by eye movement improves visuomotor performance in cerebellar patients.
    Crowdy KA; Kaur-Mann D; Cooper HL; Mansfield AG; Offord JL; Marple-Horvat DE
    Exp Brain Res; 2002 Sep; 146(2):244-7. PubMed ID: 12195526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visually guided stepping under conditions of step cycle-related denial of visual information.
    Hollands MA; Marple-Horvat DE
    Exp Brain Res; 1996 May; 109(2):343-56. PubMed ID: 8738381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic neuronal activity in the lateral cerebellum of the cat during visually guided stepping.
    Marple-Horvat DE; Criado JM
    J Physiol; 1999 Jul; 518 ( Pt 2)(Pt 2):595-603. PubMed ID: 10381604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias.
    Federighi P; Cevenini G; Dotti MT; Rosini F; Pretegiani E; Federico A; Rufa A
    Brain; 2011 Mar; 134(Pt 3):879-91. PubMed ID: 21354979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saccades and eye-head coordination in ataxia with oculomotor apraxia type 2.
    Panouillères M; Frismand S; Sillan O; Urquizar C; Vighetto A; Pélisson D; Tilikete C
    Cerebellum; 2013 Aug; 12(4):557-67. PubMed ID: 23475383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades.
    Dias EC; Segraves MA
    J Neurophysiol; 1999 May; 81(5):2191-214. PubMed ID: 10322059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey.
    Ohtsuka K; Noda H
    J Neurophysiol; 1995 Nov; 74(5):1828-40. PubMed ID: 8592177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades.
    Takagi M; Zee DS; Tamargo RJ
    J Neurophysiol; 1998 Oct; 80(4):1911-31. PubMed ID: 9772249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccadic reaction time in the monkey: advanced preparation of oculomotor programs is primarily responsible for express saccade occurrence.
    Paré M; Munoz DP
    J Neurophysiol; 1996 Dec; 76(6):3666-81. PubMed ID: 8985865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positron emission tomography study of voluntary saccadic eye movements and spatial working memory.
    Sweeney JA; Mintun MA; Kwee S; Wiseman MB; Brown DL; Rosenberg DR; Carl JR
    J Neurophysiol; 1996 Jan; 75(1):454-68. PubMed ID: 8822570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shared variance of oculomotor phenotypes in a large sample of healthy young men.
    Valakos D; Karantinos T; Evdokimidis I; Stefanis NC; Avramopoulos D; Smyrnis N
    Exp Brain Res; 2018 Aug; 236(8):2399-2410. PubMed ID: 29947959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in cortical activation during smooth pursuit and saccadic eye movements following cerebellar lesions.
    Baumann O; Ziemus B; Luerding R; Schuierer G; Bogdahn U; Greenlee MW
    Exp Brain Res; 2007 Aug; 181(2):237-47. PubMed ID: 17372726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the cerebellum and motor cortex in the regulation of visually controlled locomotion.
    Armstrong DM; Marple-Horvat DE
    Can J Physiol Pharmacol; 1996 Apr; 74(4):443-55. PubMed ID: 8828890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontal eye field contributions to rapid corrective saccades.
    Murthy A; Ray S; Shorter SM; Priddy EG; Schall JD; Thompson KG
    J Neurophysiol; 2007 Feb; 97(2):1457-69. PubMed ID: 17135479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of cerebellar hemispheres in spatial memorization of saccadic eye movements: an fMRI study.
    Nitschke MF; Binkofski F; Buccino G; Posse S; Erdmann C; Kömpf D; Seitz RJ; Heide W
    Hum Brain Mapp; 2004 Jun; 22(2):155-64. PubMed ID: 15108303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypometric primary saccades of schizophrenics in a delayed-response task.
    Everling S; Krappmann P; Preuss S; Brand A; Flohr H
    Exp Brain Res; 1996 Sep; 111(2):289-95. PubMed ID: 8891659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a role of corrective eye movements during gaze fixation in saccade planning.
    Pérez Zapata L; Solé Puig M; Aznar-Casanova JA; Supèr H
    Eur J Neurosci; 2015 Jan; 41(2):227-33. PubMed ID: 25359297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.