BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 11156366)

  • 1. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome.
    Sigal A; Rotter V
    Cancer Res; 2000 Dec; 60(24):6788-93. PubMed ID: 11156366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants.
    Inga A; Resnick MA
    Oncogene; 2001 Jun; 20(26):3409-19. PubMed ID: 11423991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p53 mutants without a functional tetramerisation domain are not oncogenic.
    Chène P; Bechter E
    J Mol Biol; 1999 Mar; 286(5):1269-74. PubMed ID: 10064694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function.
    de Vries A; Flores ER; Miranda B; Hsieh HM; van Oostrom CT; Sage J; Jacks T
    Proc Natl Acad Sci U S A; 2002 Mar; 99(5):2948-53. PubMed ID: 11867759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relevance of p53 protein and its mutations for novel strategies in cancer therapy].
    Müller P; Nenutil R; Vojtĕsek B
    Cas Lek Cesk; 2004; 143(5):313-7. PubMed ID: 15305766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. p53 mutation heterogeneity in cancer.
    Soussi T; Lozano G
    Biochem Biophys Res Commun; 2005 Jun; 331(3):834-42. PubMed ID: 15865939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes.
    Willis A; Jung EJ; Wakefield T; Chen X
    Oncogene; 2004 Mar; 23(13):2330-8. PubMed ID: 14743206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gain-of-function mutations in the tumor suppressor gene p53.
    van Oijen MG; Slootweg PJ
    Clin Cancer Res; 2000 Jun; 6(6):2138-45. PubMed ID: 10873062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy.
    Bullock AN; Henckel J; Fersht AR
    Oncogene; 2000 Mar; 19(10):1245-56. PubMed ID: 10713666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis.
    Kato S; Han SY; Liu W; Otsuka K; Shibata H; Kanamaru R; Ishioka C
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8424-9. PubMed ID: 12826609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dominance of wild-type p53-mediated transcriptional activation in breast epithelial cells.
    Davis P; Bazar K; Huper G; Lozano G; Marks J; Iglehart JD
    Oncogene; 1996 Sep; 13(6):1315-22. PubMed ID: 8808706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants.
    Lin J; Teresky AK; Levine AJ
    Oncogene; 1995 Jun; 10(12):2387-90. PubMed ID: 7784087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivation of mutant p53: molecular mechanisms and therapeutic potential.
    Selivanova G; Wiman KG
    Oncogene; 2007 Apr; 26(15):2243-54. PubMed ID: 17401433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abrogation of wild-type p53-mediated transactivation is insufficient for mutant p53-induced immortalization of normal human mammary epithelial cells.
    Cao Y; Gao Q; Wazer DE; Band V
    Cancer Res; 1997 Dec; 57(24):5584-9. PubMed ID: 9407971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oncogenic mutation of the p53 gene derived from head and neck cancer prevents cells from undergoing apoptosis after DNA damage.
    Kawamata H; Omotehara F; Nakashiro K; Uchida D; Shinagawa Y; Tachibana M; Imai Y; Fujimori T
    Int J Oncol; 2007 May; 30(5):1089-97. PubMed ID: 17390010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutant p53: "gain of function" through perturbation of nuclear structure and function?
    Deppert W; Göhler T; Koga H; Kim E
    J Cell Biochem Suppl; 2000; Suppl 35():115-22. PubMed ID: 11389540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of p53 protein core domain structural alteration on ovarian cancer survival.
    Rose SL; Robertson AD; Goodheart MJ; Smith BJ; DeYoung BR; Buller RE
    Clin Cancer Res; 2003 Sep; 9(11):4139-44. PubMed ID: 14519637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'Gain of function' phenotype of tumor-derived mutant p53 requires the oligomerization/nonsequence-specific nucleic acid-binding domain.
    Lányi A; Deb D; Seymour RC; Ludes-Meyers JH; Subler MA; Deb S
    Oncogene; 1998 Jun; 16(24):3169-76. PubMed ID: 9671396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gain-of-function p53 mutations enhance alteration of the T-cell receptor following X-irradiation, independently of the cell cycle and cell survival.
    Iwamoto KS; Mizuno T; Ito T; Tsuyama N; Kyoizumi S; Seyama T
    Cancer Res; 1996 Sep; 56(17):3862-5. PubMed ID: 8752146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.