These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cytochrome b558-dependent NAD(P)H oxidase-phox units in smooth muscle and macrophages of atherosclerotic lesions. Kalinina N; Agrotis A; Tararak E; Antropova Y; Kanellakis P; Ilyinskaya O; Quinn MT; Smirnov V; Bobik A Arterioscler Thromb Vasc Biol; 2002 Dec; 22(12):2037-43. PubMed ID: 12482831 [TBL] [Abstract][Full Text] [Related]
4. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Lynn S; Gurr JR; Lai HT; Jan KY Circ Res; 2000 Mar; 86(5):514-9. PubMed ID: 10720412 [TBL] [Abstract][Full Text] [Related]
5. Enhanced superoxide production in experimental venous bypass graft intimal hyperplasia: role of NAD(P)H oxidase. West N; Guzik T; Black E; Channon K Arterioscler Thromb Vasc Biol; 2001 Feb; 21(2):189-94. PubMed ID: 11156851 [TBL] [Abstract][Full Text] [Related]
6. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Touyz RM; Chen X; Tabet F; Yao G; He G; Quinn MT; Pagano PJ; Schiffrin EL Circ Res; 2002 Jun; 90(11):1205-13. PubMed ID: 12065324 [TBL] [Abstract][Full Text] [Related]
8. Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in vascular smooth muscle. De Keulenaer GW; Alexander RW; Ushio-Fukai M; Ishizaka N; Griendling KK Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):653-7. PubMed ID: 9445395 [TBL] [Abstract][Full Text] [Related]
9. Arachidonic acid metabolites mediate angiotensin II-induced NADH/NADPH oxidase activity and hypertrophy in vascular smooth muscle cells. Zafari AM; Ushio-Fukai M; Minieri CA; Akers M; Lassègue B; Griendling KK Antioxid Redox Signal; 1999; 1(2):167-79. PubMed ID: 11228745 [TBL] [Abstract][Full Text] [Related]
10. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells. Perner A; Andresen L; Pedersen G; Rask-Madsen J Gut; 2003 Feb; 52(2):231-6. PubMed ID: 12524405 [TBL] [Abstract][Full Text] [Related]
11. Importance of NAD(P)H oxidase-mediated oxidative stress and contractile type smooth muscle myosin heavy chain SM2 at the early stage of atherosclerosis. Itoh S; Umemoto S; Hiromoto M; Toma Y; Tomochika Y; Aoyagi S; Tanaka M; Fujii T; Matsuzaki M Circulation; 2002 May; 105(19):2288-95. PubMed ID: 12010912 [TBL] [Abstract][Full Text] [Related]
12. Functional association of nox1 with p22phox in vascular smooth muscle cells. Hanna IR; Hilenski LL; Dikalova A; Taniyama Y; Dikalov S; Lyle A; Quinn MT; Lassègue B; Griendling KK Free Radic Biol Med; 2004 Nov; 37(10):1542-9. PubMed ID: 15477006 [TBL] [Abstract][Full Text] [Related]
13. NAD(P)H oxidase participates in the signaling events in high glucose-induced proliferation of vascular smooth muscle cells. Lee HS; Son SM; Kim YK; Hong KW; Kim CD Life Sci; 2003 May; 72(24):2719-30. PubMed ID: 12679189 [TBL] [Abstract][Full Text] [Related]
14. Superoxide production and expression of nox family proteins in human atherosclerosis. Sorescu D; Weiss D; Lassègue B; Clempus RE; Szöcs K; Sorescu GP; Valppu L; Quinn MT; Lambeth JD; Vega JD; Taylor WR; Griendling KK Circulation; 2002 Mar; 105(12):1429-35. PubMed ID: 11914250 [TBL] [Abstract][Full Text] [Related]
15. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Mollnau H; Wendt M; Szöcs K; Lassègue B; Schulz E; Oelze M; Li H; Bodenschatz M; August M; Kleschyov AL; Tsilimingas N; Walter U; Förstermann U; Meinertz T; Griendling K; Münzel T Circ Res; 2002 Mar; 90(4):E58-65. PubMed ID: 11884382 [TBL] [Abstract][Full Text] [Related]
16. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells. Hilenski LL; Clempus RE; Quinn MT; Lambeth JD; Griendling KK Arterioscler Thromb Vasc Biol; 2004 Apr; 24(4):677-83. PubMed ID: 14670934 [TBL] [Abstract][Full Text] [Related]
17. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Zalba G; Beaumont FJ; San José G; Fortuño A; Fortuño MA; Etayo JC; Díez J Hypertension; 2000 May; 35(5):1055-61. PubMed ID: 10818064 [TBL] [Abstract][Full Text] [Related]
18. Vascular NAD(P)H oxidase triggers delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Kim DE; Suh YS; Lee MS; Kim KY; Lee JH; Lee HS; Hong KW; Kim CD Stroke; 2002 Nov; 33(11):2687-91. PubMed ID: 12411662 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Guzik TJ; Mussa S; Gastaldi D; Sadowski J; Ratnatunga C; Pillai R; Channon KM Circulation; 2002 Apr; 105(14):1656-62. PubMed ID: 11940543 [TBL] [Abstract][Full Text] [Related]
20. NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels. Hamilton CA; Brosnan MJ; Al-Benna S; Berg G; Dominiczak AF Hypertension; 2002 Nov; 40(5):755-62. PubMed ID: 12411473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]