These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 11157414)

  • 1. Counter-matching in studies of gene-environment interaction: efficiency and feasibility.
    Andrieu N; Goldstein AM; Thomas DC; Langholz B
    Am J Epidemiol; 2001 Feb; 153(3):265-74. PubMed ID: 11157414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The case-combined-control design was efficient in detecting gene-environment interactions.
    Andrieu N; Goldstein AM
    J Clin Epidemiol; 2004 Jul; 57(7):662-71. PubMed ID: 15358394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased power to detect gene-environment interaction using siblings controls.
    Andrieu N; Dondon MG; Goldstein AM
    Ann Epidemiol; 2005 Oct; 15(9):705-11. PubMed ID: 16157257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The application of counter-matching design in epidemiological research].
    Hu XY; Wang JH
    Zhonghua Liu Xing Bing Xue Za Zhi; 2005 Sep; 26(9):723-5. PubMed ID: 16471228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible matching strategies to increase power and efficiency to detect and estimate gene-environment interactions in case-control studies.
    Stürmer T; Brenner H
    Am J Epidemiol; 2002 Apr; 155(7):593-602. PubMed ID: 11914186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the efficiency of nested case-control studies of interaction by selecting controls using counter matching on exposure.
    Cologne JB; Sharp GB; Neriishi K; Verkasalo PK; Land CE; Nakachi K
    Int J Epidemiol; 2004 Jun; 33(3):485-92. PubMed ID: 15105408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting controls for assessing interaction in nested case-control studies.
    Cologne J; Langholz B
    J Epidemiol; 2003 Jul; 13(4):193-202. PubMed ID: 12934962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting gene-environment independence in family-based case-control studies: increased power for detecting associations, interactions and joint effects.
    Chatterjee N; Kalaylioglu Z; Carroll RJ
    Genet Epidemiol; 2005 Feb; 28(2):138-56. PubMed ID: 15593088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible matching in case-control studies of gene-environment interactions.
    Saunders CL; Barrett JH
    Am J Epidemiol; 2004 Jan; 159(1):17-22. PubMed ID: 14693655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of flexible matching strategy to detect gene-environment interactions for increasing the study power].
    Liang X; Zhang YJ; Liu B; Jin MJ; Chen K
    Zhonghua Liu Xing Bing Xue Za Zhi; 2010 Jan; 31(1):96-9. PubMed ID: 20302710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The detection of gene-environment interaction for continuous traits: should we deal with measurement error by bigger studies or better measurement?
    Wong MY; Day NE; Luan JA; Chan KP; Wareham NJ
    Int J Epidemiol; 2003 Feb; 32(1):51-7. PubMed ID: 12690008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential gain in efficiency and power to detect gene-environment interactions by matching in case-control studies.
    Stürmer T; Brenner H
    Genet Epidemiol; 2000 Jan; 18(1):63-80. PubMed ID: 10603459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of interaction involving identified genes: available study designs.
    Goldstein AM; Andrieu N
    J Natl Cancer Inst Monogr; 1999; (26):49-54. PubMed ID: 10854486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The efficiency of matching in case-control studies of risk-factor interactions.
    Thomas DC; Greenland S
    J Chronic Dis; 1985; 38(7):569-74. PubMed ID: 4008599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample size requirements for indirect association studies of gene-environment interactions (G x E).
    Hein R; Beckmann L; Chang-Claude J
    Genet Epidemiol; 2008 Apr; 32(3):235-45. PubMed ID: 18163529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The design of case-control studies: the influence of confounding and interaction effects.
    Smith PG; Day NE
    Int J Epidemiol; 1984 Sep; 13(3):356-65. PubMed ID: 6386716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methodological and conceptual issues regarding occupational psychosocial coronary heart disease epidemiology.
    Burr H; Formazin M; Pohrt A
    Scand J Work Environ Health; 2016 May; 42(3):251-5. PubMed ID: 26960179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of exposure-biased sampling designs on detection of gene-environment interactions in case-control studies with potential exposure misclassification.
    Stenzel SL; Ahn J; Boonstra PS; Gruber SB; Mukherjee B
    Eur J Epidemiol; 2015 May; 30(5):413-23. PubMed ID: 24894824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unconditional analyses can increase efficiency in assessing gene-environment interaction of the case-combined-control design.
    Goldstein AM; Dondon MG; Andrieu N
    Int J Epidemiol; 2006 Aug; 35(4):1067-73. PubMed ID: 16556643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tests for gene-environment interaction from case-control data: a novel study of type I error, power and designs.
    Mukherjee B; Ahn J; Gruber SB; Rennert G; Moreno V; Chatterjee N
    Genet Epidemiol; 2008 Nov; 32(7):615-26. PubMed ID: 18473390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.