BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 11157563)

  • 1. A study of the cortical processing of ano-rectal sensation using functional MRI.
    Hobday DI; Aziz Q; Thacker N; Hollander I; Jackson A; Thompson DG
    Brain; 2001 Feb; 124(Pt 2):361-8. PubMed ID: 11157563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study.
    Eickhoff SB; Lotze M; Wietek B; Amunts K; Enck P; Zilles K
    Neuroimage; 2006 Jul; 31(3):1004-14. PubMed ID: 16529950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically evoked cortical potentials: A physiological approach to assessment of anorectal sensory pathways.
    Carrington EV; Evers J; Scott SM; Knowles CH; O'Connell PR; Jones JF
    J Neurosci Methods; 2015 Dec; 256():198-202. PubMed ID: 26363190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical processing of residual ano-rectal sensation in patients with spinal cord injury: an fMRI study.
    Wietek BM; Baron CH; Erb M; Hinninghofen H; Badtke A; Kaps HP; Grodd W; Enck P
    Neurogastroenterol Motil; 2008 May; 20(5):488-97. PubMed ID: 18298436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral representation of the anorectum using functional magnetic resonance imaging.
    Bittorf B; Ringler R; Forster C; Hohenberger W; Matzel KE
    Br J Surg; 2006 Oct; 93(10):1251-7. PubMed ID: 16758465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral cortical representation of reflexive and volitional swallowing in humans.
    Kern MK; Jaradeh S; Arndorfer RC; Shaker R
    Am J Physiol Gastrointest Liver Physiol; 2001 Mar; 280(3):G354-60. PubMed ID: 11171617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral activation during anal and rectal stimulation.
    Lotze M; Wietek B; Birbaumer N; Ehrhardt J; Grodd W; Enck P
    Neuroimage; 2001 Nov; 14(5):1027-34. PubMed ID: 11697934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cortical processing of human somatic and visceral sensation.
    Aziz Q; Thompson DG; Ng VW; Hamdy S; Sarkar S; Brammer MJ; Bullmore ET; Hobson A; Tracey I; Gregory L; Simmons A; Williams SC
    J Neurosci; 2000 Apr; 20(7):2657-63. PubMed ID: 10729346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical connections between brain areas activated during rectal distension in healthy volunteers: a visceral pain network.
    Moisset X; Bouhassira D; Denis D; Dominique G; Benoit C; Sabaté JM
    Eur J Pain; 2010 Feb; 14(2):142-8. PubMed ID: 19473859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gender differences in cortical representation of rectal distension in healthy humans.
    Kern MK; Jaradeh S; Arndorfer RC; Jesmanowicz A; Hyde J; Shaker R
    Am J Physiol Gastrointest Liver Physiol; 2001 Dec; 281(6):G1512-23. PubMed ID: 11705757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gastric fundic distension activates fronto-limbic structures but not primary somatosensory cortex: a functional magnetic resonance imaging study.
    Ladabaum U; Roberts TP; McGonigle DJ
    Neuroimage; 2007 Jan; 34(2):724-32. PubMed ID: 17110130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tickling expectations: neural processing in anticipation of a sensory stimulus.
    Carlsson K; Petrovic P; Skare S; Petersson KM; Ingvar M
    J Cogn Neurosci; 2000 Jul; 12(4):691-703. PubMed ID: 10936920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of visceral and cutaneous pain in the human brain.
    Strigo IA; Duncan GH; Boivin M; Bushnell MC
    J Neurophysiol; 2003 Jun; 89(6):3294-303. PubMed ID: 12611986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional neuroimaging of visceral sensation.
    Aziz Q; Schnitzler A; Enck P
    J Clin Neurophysiol; 2000 Nov; 17(6):604-12. PubMed ID: 11151978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efferent connections of an auditory area in the caudal insular cortex of the rat: anatomical nodes for cortical streams of auditory processing and cross-modal sensory interactions.
    Kimura A; Imbe H; Donishi T
    Neuroscience; 2010 Apr; 166(4):1140-57. PubMed ID: 20105453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncertainty in anticipation of uncomfortable rectal distension is modulated by the autonomic nervous system--a fMRI study in healthy volunteers.
    Rubio A; Van Oudenhove L; Pellissier S; Ly HG; Dupont P; Lafaye de Micheaux H; Tack J; Dantzer C; Delon-Martin C; Bonaz B
    Neuroimage; 2015 Feb; 107():10-22. PubMed ID: 25479021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The primary somatosensory cortex and the insula contribute differently to the processing of transient and sustained nociceptive and non-nociceptive somatosensory inputs.
    Hu L; Zhang L; Chen R; Yu H; Li H; Mouraux A
    Hum Brain Mapp; 2015 Nov; 36(11):4346-4360. PubMed ID: 26252509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain processing of rectal sensation in adolescents with functional defecation disorders and healthy controls.
    Mugie SM; Koppen IJN; van den Berg MM; Groot PFC; Reneman L; de Ruiter MB; Benninga MA
    Neurogastroenterol Motil; 2018 Mar; 30(3):. PubMed ID: 28975729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Augmented cerebral activation by lumbar mechanical stimulus in chronic low back pain patients: an FMRI study.
    Kobayashi Y; Kurata J; Sekiguchi M; Kokubun M; Akaishizawa T; Chiba Y; Konno S; Kikuchi S
    Spine (Phila Pa 1976); 2009 Oct; 34(22):2431-6. PubMed ID: 19789470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory and motor responses to rectal distention vary according to rate and pattern of balloon inflation.
    Sun WM; Read NW; Prior A; Daly JA; Cheah SK; Grundy D
    Gastroenterology; 1990 Oct; 99(4):1008-15. PubMed ID: 2394323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.