These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 1115767)
1. Modification of the cysteine residue of streptococcal dihydrofolate reducatse. Warwick PE; Freisheim JH Biochemistry; 1975 Feb; 14(4):664-8. PubMed ID: 1115767 [TBL] [Abstract][Full Text] [Related]
2. The structure of dihydrofolate reductase. I. Inactivation of bacterial dihydrofolate reductase concomitant with modification of a methionine residue at the active site. Gleisner JM; Blakley RL J Biol Chem; 1975 Feb; 250(4):1580-7. PubMed ID: 1112818 [TBL] [Abstract][Full Text] [Related]
3. Role of tryptophan in dihydrofolate reductase. Warwick PE; D'Souza L; Freisheim JH Biochemistry; 1972 Sep; 11(20):3775-9. PubMed ID: 5072201 [No Abstract] [Full Text] [Related]
4. Effect of N-bromosuccinimide modification on dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli. Activity, spectrophotometric, fluorescence and circular dichroism studies. Williams MN J Biol Chem; 1975 Jan; 250(1):322-30. PubMed ID: 237891 [TBL] [Abstract][Full Text] [Related]
5. Binary and ternary complexes of dihydrofolate reductase with substrates, coenzymes and inhibitors. Circular dichroic and magnetic circular dichroic studies. Reddy AV; Behnke WD; Freisheim JH Biochim Biophys Acta; 1978 Apr; 533(2):415-27. PubMed ID: 417736 [TBL] [Abstract][Full Text] [Related]
6. Circular dichroic studies on the interaction of dihydrofolate reductase with substrates, coenzymes, and inhibitors. D'Souza L; Freisheim JH Biochemistry; 1972 Sep; 11(20):3770-4. PubMed ID: 4403684 [No Abstract] [Full Text] [Related]
7. The modification of sulfhydryl groups of glutamine synthetase from Bacillus stearothermophilus with 5, 5'-dithiobis(2-nitrobenzoic acid). Hachimori A; Takeda A; Nagaoka T; Suzuki H; Nosoh Y; Samejima T J Biochem; 1975 Dec; 78(6):1235-40. PubMed ID: 5420 [TBL] [Abstract][Full Text] [Related]
8. Reaction of dihydrofolate reductase with dansyl chloride. Chemical modification of a sensitive lysine residue and fluorometric studies of the dansylated enzyme. Vehar GA; Reddy AV; Freisheim JH Biochemistry; 1976 Jun; 15(12):2512-8. PubMed ID: 820367 [TBL] [Abstract][Full Text] [Related]
9. The kinetic study of arginine kinase from the sea cucumber Stichopus japonicus with 5,5'-dithiobis-(2-nitrobenzoic acid). Feng Z; Qin G; Xicheng W Int J Biol Macromol; 2005 Aug; 36(3):184-90. PubMed ID: 16038973 [TBL] [Abstract][Full Text] [Related]
10. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding. Adak S; Mazumder A; Banerjee RK Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798 [TBL] [Abstract][Full Text] [Related]
11. The effect of histidine modification on the activity of dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B. Greenfield NJ Biochemistry; 1974 Oct; 13(22):4494-500. PubMed ID: 4154102 [No Abstract] [Full Text] [Related]
12. Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols. Brocklehurst K; Little G Biochem J; 1973 May; 133(1):67-80. PubMed ID: 4721623 [TBL] [Abstract][Full Text] [Related]
13. Circular dichroism studies of dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B, MB 1428: ternary complexes. Greenfield NJ Biochim Biophys Acta; 1975 Sep; 403(1):32-46. PubMed ID: 240430 [TBL] [Abstract][Full Text] [Related]
14. Isolation and properties of 6-phosphogluconate dehydrogenase from Escherichia coli. Some comparisons with the thermophilic enzyme from Bacillus stearothermophilus. Veronese FM; Boccù E; Fontana A Biochemistry; 1976 Sep; 15(18):4026-33. PubMed ID: 786365 [TBL] [Abstract][Full Text] [Related]
15. Stopped-flow NMR spectroscopy: real-time unfolding studies of 6-19F-tryptophan-labeled Escherichia coli dihydrofolate reductase. Hoeltzli SD; Frieden C Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9318-22. PubMed ID: 7568125 [TBL] [Abstract][Full Text] [Related]
16. Evidence for proximal cysteine and lysine residues at or near the active site of arginine kinase of Stichopus japonicus. Guo Q; Chen B; Wang X Biochemistry (Mosc); 2004 Dec; 69(12):1336-43. PubMed ID: 15627388 [TBL] [Abstract][Full Text] [Related]
17. L1210 dihydrofolate reductase. Kinetics and mechanism of activation by various agents. Duffy TH; Beckman SB; Peterson SM; Vitols KS; Huennekens FM J Biol Chem; 1987 May; 262(15):7028-33. PubMed ID: 3294825 [TBL] [Abstract][Full Text] [Related]
18. The modification of cholinesterase activity by 5,5'-dithiobis-(2-nitrobenzoic acid) included in the coupled spectrophotometric assay. Evidence for a non-catalytic substrate-binding site. Brownson C; Watts DC Biochem J; 1973 Feb; 131(2):369-74. PubMed ID: 4722440 [TBL] [Abstract][Full Text] [Related]
19. Circular dichroic titration of dihydrofolate reductase with TPNH. Freisheim JH; D'Souza L Biochem Biophys Res Commun; 1971 Nov; 45(3):803-8. PubMed ID: 4399637 [No Abstract] [Full Text] [Related]
20. Effect of temperature on fluorescence and circular dichroism of Escherichia coli dihydrofolate reductase and its complexes. Kitchell BB; Henkens RW Biochim Biophys Acta; 1978 May; 534(1):89-98. PubMed ID: 26417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]