BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 11157739)

  • 21. Temperature effects on the allosteric transition of ATP sulfurylase from Penicillium chrysogenum.
    Medina DC; Hanna E; MacRae IJ; Fisher AJ; Segel IH
    Arch Biochem Biophys; 2001 Sep; 393(1):51-60. PubMed ID: 11516160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and sequencing of ATP sulfurylase from Penicillium chrysogenum. Identification of a likely allosteric domain.
    Foster BA; Thomas SM; Mahr JA; Renosto F; Patel HC; Segel IH
    J Biol Chem; 1994 Aug; 269(31):19777-86. PubMed ID: 8051058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time detection and quantification of adenosine triphosphate sulfurylase activity by a bioluminometric approach.
    Karamohamed S; Nyrén P
    Anal Biochem; 1999 Jun; 271(1):81-5. PubMed ID: 10361007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATP sulfurylase from higher plants: kinetic and structural characterization of the chloroplast and cytosol enzymes from spinach leaf.
    Renosto F; Patel HC; Martin RL; Thomassian C; Zimmerman G; Segel IH
    Arch Biochem Biophys; 1993 Dec; 307(2):272-85. PubMed ID: 8274013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of Saccharomyces cerevisiae 3'-phosphoadenosine-5'-phosphosulfate reductase complexed with adenosine 3',5'-bisphosphate.
    Yu Z; Lemongello D; Segel IH; Fisher AJ
    Biochemistry; 2008 Dec; 47(48):12777-86. PubMed ID: 18991405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity.
    Gay SC; Segel IH; Fisher AJ
    Acta Crystallogr D Biol Crystallogr; 2009 Oct; 65(Pt 10):1021-31. PubMed ID: 19770499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sulfate-activating enzymes of Penicillium chrysogenum. The ATP sulfurylase.adenosine 5'-phosphosulfate complex does not serve as a substrate for adenosine 5'-phosphosulfate kinase.
    Renosto F; Martin RL; Segel IH
    J Biol Chem; 1989 Jun; 264(16):9433-7. PubMed ID: 2542310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis for the substrate recognition mechanism of ATP-sulfurylase domain of human PAPS synthase 2.
    Zhang P; Zhang L; Hou Z; Lin H; Gao H; Zhang L
    Biochem Biophys Res Commun; 2022 Jan; 586():1-7. PubMed ID: 34818583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Expression and purification of ATP sulfurylase from Saccharomyces cerevisias in Escherichia coli and its application in pyrosequencing].
    Luo J; Wu WJ; Zou BJ; Zhou GH
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):623-7. PubMed ID: 17822033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP sulfurylase from filamentous fungi: which sulfonucleotide is the true allosteric effector?
    MacRae I; Segel IH
    Arch Biochem Biophys; 1997 Jan; 337(1):17-26. PubMed ID: 8990263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Allosteric and catalytic functions of the PPi-binding motif in the ATP sulfurylase-GTPase system.
    Pilloff DE; Leyh TS
    J Biol Chem; 2003 Dec; 278(50):50435-41. PubMed ID: 14506286
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The isolation and characterization of cDNA encoding the mouse bifunctional ATP sulfurylase-adenosine 5'-phosphosulfate kinase.
    Li H; Deyrup A; Mensch JR; Domowicz M; Konstantinidis AK; Schwartz NB
    J Biol Chem; 1995 Dec; 270(49):29453-9. PubMed ID: 7493984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic mechanism of the dimeric ATP sulfurylase from plants.
    Ravilious GE; Herrmann J; Goo Lee S; Westfall CS; Jez JM
    Biosci Rep; 2013 Jul; 33(4):. PubMed ID: 23789618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Channeling in sulfate activating complexes.
    Sun M; Leyh TS
    Biochemistry; 2006 Sep; 45(38):11304-11. PubMed ID: 16981690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The crystal structure of the cytosolic exopolyphosphatase from Saccharomyces cerevisiae reveals the basis for substrate specificity.
    Ugochukwu E; Lovering AL; Mather OC; Young TW; White SA
    J Mol Biol; 2007 Aug; 371(4):1007-21. PubMed ID: 17599355
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction of positive cooperativity by amino acid replacements within the C-terminal domain of Penicillium chrysogenum ATP sulfurylase.
    MacRae IJ; Hanna E; Ho JD; Fisher AJ; Segel IH
    J Biol Chem; 2000 Nov; 275(46):36303-10. PubMed ID: 10956658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site-selected mutagenesis of a conserved nucleotide binding HXGH motif located in the ATP sulfurylase domain of human bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase.
    Venkatachalam KV; Fuda H; Koonin EV; Strott CA
    J Biol Chem; 1999 Jan; 274(5):2601-4. PubMed ID: 9915785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Allosteric inhibition via R-state destabilization in ATP sulfurylase from Penicillium chrysogenum.
    MacRae IJ; Segel IH; Fisher AJ
    Nat Struct Biol; 2002 Dec; 9(12):945-9. PubMed ID: 12426581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic and stability properties of Penicillium chrysogenum ATP sulfurylase missing the C-terminal regulatory domain.
    Hanna E; Ng KF; MacRae IJ; Bley CJ; Fisher AJ; Segel IH
    J Biol Chem; 2004 Feb; 279(6):4415-24. PubMed ID: 14613928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structure of adenosine 5'-phosphosulfate kinase isolated from Archaeoglobus fulgidus.
    Kawakami T; Teramoto T; Kakuta Y
    Biochem Biophys Res Commun; 2023 Feb; 643():105-110. PubMed ID: 36592583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.