BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 11158371)

  • 1. Mechanisms for evolving hypervariability: the case of conopeptides.
    Conticello SG; Gilad Y; Avidan N; Ben-Asher E; Levy Z; Fainzilber M
    Mol Biol Evol; 2001 Feb; 18(2):120-31. PubMed ID: 11158371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput identification of novel conotoxins from the Chinese tubular cone snail (Conus betulinus) by multi-transcriptome sequencing.
    Peng C; Yao G; Gao BM; Fan CX; Bian C; Wang J; Cao Y; Wen B; Zhu Y; Ruan Z; Zhao X; You X; Bai J; Li J; Lin Z; Zou S; Zhang X; Qiu Y; Chen J; Coon SL; Yang J; Chen JS; Shi Q
    Gigascience; 2016; 5():17. PubMed ID: 27087938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speciation of cone snails and interspecific hyperdivergence of their venom peptides. Potential evolutionary significance of introns.
    Olivera BM; Walker C; Cartier GE; Hooper D; Santos AD; Schoenfeld R; Shetty R; Watkins M; Bandyopadhyay P; Hillyard DR
    Ann N Y Acad Sci; 1999 May; 870():223-37. PubMed ID: 10415486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is Mutation Random or Targeted?: No Evidence for Hypermutability in Snail Toxin Genes.
    Roy SW
    Mol Biol Evol; 2016 Oct; 33(10):2642-7. PubMed ID: 27486220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conopeptides from Conus striatus and Conus textile by cDNA cloning.
    Lu BS; Yu F; Zhao D; Huang PT; Huang CF
    Peptides; 1999; 20(10):1139-44. PubMed ID: 10573284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes.
    Barghi N; Concepcion GP; Olivera BM; Lluisma AO
    Genome Biol Evol; 2015 Jun; 7(6):1797-814. PubMed ID: 26047846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails.
    Duda TF; Palumbi SR
    Mol Biol Evol; 2000 Sep; 17(9):1286-93. PubMed ID: 10958845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of the O-superfamily conotoxins from Conus miles.
    Luo S; Zhangsun D; Feng J; Wu Y; Zhu X; Hu Y
    J Pept Sci; 2007 Jan; 13(1):44-53. PubMed ID: 17106905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel alpha-conotoxins identified by gene sequencing from cone snails native to Hainan, and their sequence diversity.
    Luo S; Zhangsun D; Zhang B; Quan Y; Wu Y
    J Pept Sci; 2006 Nov; 12(11):693-704. PubMed ID: 16981242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct cDNA cloning of novel conopeptide precursors of the O-superfamily.
    Kauferstein S; Melaun C; Mebs D
    Peptides; 2005 Mar; 26(3):361-7. PubMed ID: 15652641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution picture of a venom gland transcriptome: case study with the marine snail Conus consors.
    Terrat Y; Biass D; Dutertre S; Favreau P; Remm M; Stöcklin R; Piquemal D; Ducancel F
    Toxicon; 2012 Jan; 59(1):34-46. PubMed ID: 22079299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic messiness in the venom duct of Conus miles contributes to conotoxin diversity.
    Jin AH; Dutertre S; Kaas Q; Lavergne V; Kubala P; Lewis RJ; Alewood PF
    Mol Cell Proteomics; 2013 Dec; 12(12):3824-33. PubMed ID: 24043424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High conopeptide diversity in Conus tribblei revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms.
    Barghi N; Concepcion GP; Olivera BM; Lluisma AO
    Mar Biotechnol (NY); 2015 Feb; 17(1):81-98. PubMed ID: 25117477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular phylogeny, classification and evolution of conopeptides.
    Puillandre N; Koua D; Favreau P; Olivera BM; Stöcklin R
    J Mol Evol; 2012 Jun; 74(5-6):297-309. PubMed ID: 22760645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and molecular diversity of T-superfamily conotoxins from Conus lividus and Conus litteratus.
    Luo S; Zhangsun D; Wu Y; Zhu X; Xie L; Hu Y; Zhang J; Zhao X
    Chem Biol Drug Des; 2006 Aug; 68(2):97-106. PubMed ID: 16999774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized deep-targeted proteotranscriptomic profiling reveals unexplored Conus toxin diversity and novel cysteine frameworks.
    Lavergne V; Harliwong I; Jones A; Miller D; Taft RJ; Alewood PF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):E3782-91. PubMed ID: 26150494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conopeptide characterization and classifications: an analysis using ConoServer.
    Kaas Q; Westermann JC; Craik DJ
    Toxicon; 2010 Jul; 55(8):1491-509. PubMed ID: 20211197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of Conus peptide genes: duplication and positive selection in the A-superfamily.
    Puillandre N; Watkins M; Olivera BM
    J Mol Evol; 2010 Feb; 70(2):190-202. PubMed ID: 20143226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel conopeptides of the I-superfamily occur in several clades of cone snails.
    Kauferstein S; Huys I; Kuch U; Melaun C; Tytgat J; Mebs D
    Toxicon; 2004 Oct; 44(5):539-48. PubMed ID: 15450929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Venomous cone snails: molecular phylogeny and the generation of toxin diversity.
    Espiritu DJ; Watkins M; Dia-Monje V; Cartier GE; Cruz LJ; Olivera BM
    Toxicon; 2001 Dec; 39(12):1899-916. PubMed ID: 11600154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.